Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Earthworm Maintenance
4.2. Proteomics Approach
4.3. Harvesting of Coelomocytes
4.4. Extracellular Flux Measurements
4.5. Glucose-6 Phosphate Dehydrogenase Activity
4.6. Lysosome Quantification
4.7. Calcium Measurements
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
[Ca2+]I | Intracellular Calcium concentration |
Cd | Cadmium |
CdCl2 | Cadmiumchloride |
CO2 | Carbon dioxide |
ECAR | Extracellular acidification rate |
FCCP | Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone |
GGE | Guaiacol glyceryl ether |
G6PDH | Glucose-6-phosphate dehydrogenase |
LDH | Lactatedehydrogenase |
MT | Metallothionein |
NAD | Nicotinamide adenine dinucleotide |
OCR | Oxygen consumption rate |
PDH | Pyruvate dehydrogenase |
PPP | Pentose phosphate pathway |
PPI | Peptidyl-prolyl cis-trans isomerase-like protein |
ROS | Reactive oxygen species |
TCA | Tricarboxylic acid cycle |
UCP | Uncoupling protein |
References
- Cooper, E.L. Commentary: Blurring Borders: Innate Immunity with Adaptive Features. Front. Microbiol. 2016, 7, 358. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, M.F.; de Figueiredo, P. Fifty shades of immune defense. PLoS Pathog. 2013, 9, e1003110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, P.; Cooper, E.L.; Opper, B.; Németh, P. Earthworm Innate Immune System. In Biology of Earthworms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 229–245. [Google Scholar]
- Homa, J. Earthworm coelomocyte extracellular traps: Structural and functional similarities with neutrophil NETs. Cell Tissue Res. 2018, 371, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homa, J.; Klimek, M.; Kruk, J.; Cocquerelle, C.; Vandenbulcke, F.; Plytycz, B. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2010, 73, 1937–1943. [Google Scholar] [CrossRef]
- Opper, B.; Németh, P.; Engelmann, P. Calcium is required for coelomocyte activation in earthworms. Mol. Immunol. 2010, 47, 2047–2056. [Google Scholar] [CrossRef]
- Dorian, C.; Gattone, V.H.; Klaassen, C.D. Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol. Appl. Pharmacol. 1992, 117, 242–248. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [Green Version]
- Homa, J.; Stürzenbaum, S.R.; Morgan, A.J.; Plytycz, B. Disrupted homeostasis in coelomocytes of Eisenia fetida and Allolobophora chlorotica exposed dermally to heavy metals. Eur. J. Soil Biol. 2007, 43, S273–S280. [Google Scholar] [CrossRef]
- Shi, W.; Guan, X.; Han, Y.; Guo, C.; Rong, J.; Su, W.; Zha, S.; Wang, Y.; Liu, G. Waterborne Cd 2+ weakens the immune responses of blood clam through impacting Ca 2+ signaling and Ca 2+ related apoptosis pathways. Fish Shellfish Immunol. 2018, 77, 208–213. [Google Scholar] [CrossRef]
- Qin, Q.; Qin, S.; Wang, L.; Lei, W. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium. Aquat. Toxicol. 2012, 106, 140–146. [Google Scholar] [CrossRef]
- So, K.-Y.; Lee, B.-H.; Oh, S.-H. The critical role of autophagy in cadmium-induced immunosuppression regulated by endoplasmic reticulum stress-mediated calpain activation in RAW264.7 mouse monocytes. Toxicology 2018, 393, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Sen, S.S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish Shellfish Immunol. 2016, 54, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-S.; Lv, Z.-M.; Zhu, A.-Y.; Zheng, J.-L.; Wu, C.-W. Negative effect of chronic cadmium exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver of zebrafish: Preventive role of blue light emitting diodes. Ecotoxicol. Environ. Saf. 2017, 139, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, Z.; Cai, J.; Liu, Q.; Yang, J.; Gong, Y.; Wu, M.; Shen, Q.; Xu, S. Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat. Toxicol. 2017, 192, 171–177. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R.; Lin, Y. Allograft inflammatory factor-1 in grass carp (Ctenopharynogodon idella): Expression and response to cadmium exposure. Fish Shellfish Immunol. 2015, 47, 444–449. [Google Scholar] [CrossRef]
- Priyadarshani, S.; Madhushani, W.A.N.; Jayawardena, U.A.; Wickramasinghe, D.D.; Udagama, P.V. Heavy metal mediated immunomodulation of the Indian green frog, Euphlyctis hexadactylus (Anura:Ranidae) in urban wetlands. Ecotoxicol. Environ. Saf. 2015, 116, 40–49. [Google Scholar] [CrossRef]
- Messner, B.; Ploner, C.; Laufer, G.; Bernhard, D. Cadmium activates a programmed, lysosomal membrane permeabilization-dependent necrosis pathway. Toxicol. Lett. 2012, 212, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Evariste, L.; Rioult, D.; Brousseau, P.; Geffard, A.; David, E.; Auffret, M.; Fournier, M.; Betoulle, S. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha. Ecotoxicol. Environ. Saf. 2017, 137, 78–85. [Google Scholar] [CrossRef]
- Lim, C.-Y.; Zoncu, R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016, 214, 653–664. [Google Scholar] [CrossRef]
- Cho, I.H.; Choi, E.S.; Lim, H.G.; Lee, H.H. Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J. Biochem. Mol. Biol. 2004, 37, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Nasiadek, M.; Kilanowicz, A.; Darago, A.; Lazarenkow, A.; Michalska, M. The effect of cadmium on the coagulation and fibrinolytic system in women with uterine endometrial cancer and myoma. Int. J. Occup. Med. Environ. Health 2013, 26, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qu, W.; Saavedra, J.E.; Waalkes, M.P. The Nitric Oxide Donor, O2-Vinyl 1-(Pyrrolidin-1-yl) diazen-1-ium-1,2-diolate (V-PYRRO/NO), Protects against Cadmium-Induced Hepatotoxicity in Mice. J. Pharmacol. Exp. Ther. 2004, 310, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Ren, J.; Stammers, D.K.; Baldwin, J.E.; Harlos, K.; Schofield, C.J. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 2000, 7, 127–133. [Google Scholar] [PubMed]
- Stein, E.; Cooper, E.L. Cytochemical observations of coelomocytes from the earthworm, Lumbricus terrestris. Histochem. J. 1978, 10, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Izagirre, U.; Angulo, E.; Wade, S.C.; Ap Gwynn, I.; Marigómez, I. Beta-glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells. Cell Tissue Res. 2009, 335, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Höckner, M.; Dallinger, R.; Stürzenbaum, S.R. Metallothionein gene activation in the earthworm (Lumbricus rubellus). Biochem. Biophys. Res. Commun. 2015, 460, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Novais, S.C.; Soares, A.M.V.M.; De Coen, W.; Amorim, M.J.B. Exposure of Enchytraeus albidus to Cd and Zn—Changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. Chemosphere 2013, 90, 1305–1309. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.; Jing, W.; Dahms, H.-U.; Wang, L. Effects of Cadmium on Lipid Storage and Metabolism in the Freshwater Crab Sinopotamon henanense. PLoS ONE 2013, 8, e77569. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, J.; Bavani, G. Effect of cadmium on lactate dehyrogenase isoenzyme, succinate dehydrogenase and Na(+)-K(+)-ATPase in liver tissue of rat. J. Environ. Biol. 2009, 30, 895–898. [Google Scholar]
- Brisson, L.; Bański, P.; Sboarina, M.; Dethier, C.; Danhier, P.; Fontenille, M.-J.; Van Hée, V.F.; Vazeille, T.; Tardy, M.; Falces, J.; et al. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell 2016, 30, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012, 30, 39–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruta, L.L.; Popa, V.C.; Nicolau, I.; Danet, A.F.; Iordache, V.; Neagoe, A.D.; Farcasanu, I.C. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett. 2014, 588, 3202–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, P.; Liu, N.; Wang, Q.; Luo, J.; Wang, L. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway. PLoS ONE 2015, 10, e0144392. [Google Scholar] [CrossRef] [PubMed]
- Ježek, P.; Holendová, B.; Garlid, K.D.; Jabůrek, M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox SignalingReviewing Editors: Jerzy Beltowski, Joseph Burgoyne, Gabor Csanyi, Sergey Dikalov, Frank Krause, Anibal Vercesi, and Jeremy Ward. Antioxid. Redox Signal. 2018, 29, 667–714. [Google Scholar] [CrossRef] [Green Version]
- Kurochkin, I.O.; Etzkorn, M.; Buchwalter, D.; Leamy, L.; Sokolova, I.M. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R21–R31. [Google Scholar] [CrossRef] [Green Version]
- Ivanina, A.V.; Hawkins, C.; Sokolova, I.M. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish Shellfish Immunol. 2014, 37, 299–312. [Google Scholar] [CrossRef]
- Nahmani, J.; Hodson, M.E.; Black, S. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ. Pollut. 2007, 149, 44–58. [Google Scholar] [CrossRef]
- Tomanek, L.; Zuzow, M.J.; Hitt, L.; Serafini, L.; Valenzuela, J.J. Proteomics of hyposaline stress in blue mussel congeners (genus mytilus): Implications for biogeographic range limits in response to Climate change. J. Exp. Biol. 2012, 215, 3905–3916. [Google Scholar] [CrossRef] [Green Version]
- Strydom, C.; Robinson, C.; Pretorius, E.; Whitcutt, J.M.; Marx, J.; Bornman, M.S. The effect of selected metals on the central metabolic pathways in biology: A review. Water SA 2006, 32, 543–554. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höckner, M.; Piechnik, C.A.; Fiechtner, B.; Weinberger, B.; Tomanek, L. Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. Int. J. Mol. Sci. 2020, 21, 599. https://doi.org/10.3390/ijms21020599
Höckner M, Piechnik CA, Fiechtner B, Weinberger B, Tomanek L. Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. International Journal of Molecular Sciences. 2020; 21(2):599. https://doi.org/10.3390/ijms21020599
Chicago/Turabian StyleHöckner, Martina, Claudio Adriano Piechnik, Birgit Fiechtner, Birgit Weinberger, and Lars Tomanek. 2020. "Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes" International Journal of Molecular Sciences 21, no. 2: 599. https://doi.org/10.3390/ijms21020599
APA StyleHöckner, M., Piechnik, C. A., Fiechtner, B., Weinberger, B., & Tomanek, L. (2020). Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. International Journal of Molecular Sciences, 21(2), 599. https://doi.org/10.3390/ijms21020599