Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus)
Abstract
:1. Introduction
2. Results
2.1. Identification of the MIKC-Type MADS-Box Gene Family in C. paliurus
2.2. Chromosome Location and Synteny Analysis of MIKC-Type MADS-Box Genes
2.3. Phylogeny, Structural, and Conserved Motifs Analysis of MIKC-Type MADS-Box Genes
2.4. Estimation of Nonsynonymous (Ka) and Synonymous (Ks) Substitution Rates and Ka/Ks Values
2.5. Promoter Region Analysis of MIKC-Type MADS-Box Genes
2.6. Expression Profiles of MIKC-Type MADS-Box Genes among Different Tissues
3. Discussion
4. Materials and Methods
4.1. Plant Materials, cDNA Synthesis, and Transcriptome Sequencing
4.2. Identification of MIKC-Type MADS-Box Genes in C. paliurus
4.3. Chromosome Location and Synteny Analysis of MIKC-Type MADS-Box Genes
4.4. Prediction of Cis-Regulatory Elements of Promoter Region
4.5. Estimation of Ka/Ks Values
4.6. Expression Analysis of Selected MIKC-Type MADS-Box Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
transcription factors | TFs |
neighbor-joining | NJ |
nonsynonymous | Ka |
synonymous | Ks |
methyl jasmonate | MeJA |
PA | Protandry |
PG | Protogyny |
PA-F | Female floral buds from a protandrous plant |
PA-M | Male floral buds from a protandrous plant |
PG-F | Female floral buds from a protogynous plant |
PG-M | Male floral buds from a protogynous plant |
qRT-PCR | Quantitative real-time polymerase chain reaction |
References
- Becker, A.; Winter, K.U.; Meyer, B.; Saedler, H.; Thei En, G. MADS-Box Gene Diversity in Seed Plants 300 Million Years Ago. Mol. Biol. Evol. 2000, 17, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, Y.; Liang, X.; Nie, S.; Chen, Y.; Liang, D.; Sun, X.; Karanja, B.K.; Luo, X.; Liu, L. Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Front. Plant Sci. 2016, 7, 1390–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramzow, L.; Theissen, G. A hitchhiker’s guide to the MADS world of plants. Genome Biol. 2010, 11, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, C.; Vrebalov, J.; Giovannoni, T.J.J. The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiol. 2011, 157, 1568–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Zhang, Q.; Sun, L.; Du, D.; Cheng, T.; Pan, H.; Yang, W.; Wang, J. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Mol. Genet. Genomics 2014, 289, 903–920. [Google Scholar] [CrossRef]
- Díaz-Riquelme, J.; Lijavetzky, D.; Martínez-Zapater, J.M.; Carmona, M.J. Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant Physiol. 2009, 149, 354–369. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mao, X.; Huang, P.; Fang, S. Morphological Characterization of Flower Buds Development and Related Gene Expression Profiling at Bud Break Stage in Heterodichogamous Cyclocarya paliurus (Batal.) lljinskaja. Genes 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Fu, X.; Huang, P.; Chen, X.; Qu, Y. Heterodichogamy, Pollen Viability, and Seed Set in a Population of Polyploidy Cyclocarya Paliurus (Batal) Iljinskaja (Juglandaceae). Forests 2019, 10, 347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Young-Quek, S.; Shang, X.; Fang, S. Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells—ScienceDirect. Ind. Crop. Prod. 2021, 162, 113314. [Google Scholar] [CrossRef]
- Liu, W.; Deng, S.; Zhou, D.; Huang, Y.; Huang, X. 3,4-Seco-Dammarane Triterpenoid Saponins with Anti-inflammatory Activity Isolated from the Leaves of Cyclocarya paliurus. J. Agr. Food. Chem. 2020, 68, 2041–2053. [Google Scholar] [CrossRef] [PubMed]
- Schultz, E.A.; Haughn, G.W. LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell 1991, 3, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Parenicová, L.; Folter, S.D.; Kieffer, M.; Horner, D.S.; Colombo, L. Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis New Openings to the MADS World. The Plant Cell 2003, 15, 1538–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, C.E.; Vendramin, E.; Tarodo, S.J.; Verde, I.; Bielenberg, D.G. A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 2015, 15, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, H.; Wang, Y.; Zhang, X.; Yuan, Z. Genome-Wide Identification and Expression Analysis of MIKC-Type MADS-Box Gene Family in Punica granatum L. Agronomy 2020, 10, 1197. [Google Scholar] [CrossRef]
- Schilling, S.; Kennedy, A.; Pan, S.; Jermiin, L.S.; Melzer, R. Genome-wide analysis of MIKC-type MADS-box genes in wheat: Pervasive duplications, functional conservation and putative neofunctionalization. New Phytol. 2020, 225, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Yu, D.; Yang, Z.; Li, C.; Qanmber, G.; Li, Y.; Li, J.; Liu, Z.; Lu, L.; Wang, L.; et al. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. Front. Plant Sci. 2017, 8, 384–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, D.B.; Wu, Z.; Sharbrough, J. Correction of Persistent Errors in Arabidopsis Reference Mitochondrial Genomes. Plant Cell 2018, 30, 525–527. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Zhang, K.; Wu, J.; Zhang, L.; Pan, H.; Tang, J.; Fu, X. Genome-wide Identification and Phylogenetic Analysis of MADS-box Family Gene in Beta vulgaris. Acta Agric. Boreali-Sin. 2018, 33, 86–95. (In Chinese) [Google Scholar]
- Hou, X.J.; Liu, S.R.; Khan, M. Genome-Wide Identification, Classification, Expression Profiling, and SSR Marker Development of the MADS-Box Gene Family in Citrus. Plant Mol. Biol. Rep. 2014, 32, 28–41. [Google Scholar] [CrossRef]
- Ning, K.; Han, Y.; Chen, Z.; Luo, C.; Wang, S.; Zhang, W.; Li, L.; Zhang, X.; Fan, S.; Wang, Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. Plant Cell Environ. 2019, 42, 1868–1881. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Gong, Z.; Zhong, H.; Zhang, Y.; Zhao, G.; Gautam, M.; Deng, X.; Liu, C.; Zhang, C.; Li, Y. Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica. Biomolecules 2019, 9, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, T.; Brockman, L.L.; Meyerowitz, E.M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 1992, 68, 683–697. [Google Scholar] [CrossRef]
- Liu, J.; Fu, X.; Dong, Y.; Lu, J.; Ren, M.; Zhou, N.; Wang, C. MIKCC-type MADS-box genes in Rosa chinensis: The remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horic. Res-Engl. 2018, 5, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Leseberg, C.H.; Li, A.; Hui, K.; Duvall, M.; Long, M. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 2006, 378, 84–94. [Google Scholar] [CrossRef]
- Fan, L.; Chen, M.; Dong, B.; Wang, N.; Yu, Q.; Wang, X.; Xuan, L.; Wang, Y.; Zhang, S.; Shen, Y. Transcriptomic Analysis of Flower Bud Differentiation in Magnolia sinostellata. Genes 2018, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, A.; Jeffryes, M.; Bateman, A.; Finn, R.D. The HMMER Web Server for Protein Sequence Similarity Search. Curr. Protoc. Bioinform. 2017, 60, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Rombauts, S.; Dehais, P.; Van Montagu, M.; Rouze, P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 1999, 27, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, J.; Zhao, X.Q.; Wang, J.; Wong, G.K.; Yu, J. KaKs_Calculator: Calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 2006, 4, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Exon Count | Chromosome Localization | Genomic Sequence (bp) | CDS (bp) | Amino Acid (aa) | PI | MW (kDa) |
---|---|---|---|---|---|---|---|---|
CpMADS01 | CpaF1st01670 | 5 | Chr1:22512748-22522152 | 9405 | 654 | 217 | 6.00 | 25.26 |
CpMADS02 | CpaF1st02480 | 8 | Chr1:34029459-34037773 | 8315 | 729 | 242 | 8.48 | 28.10 |
CpMADS03 | CpaF1st02481 | 8 | Chr1:34039378-34050977 | 11,600 | 771 | 256 | 9.23 | 29.73 |
CpMADS04 | CpaF1st02666 | 7 | Chr1:36013106-36019785 | 6680 | 738 | 245 | 8.88 | 28.09 |
CpMADS05 | CpaF1st03541 | 7 | Chr1:43429845-43432936 | 3092 | 483 | 160 | 4.99 | 19.28 |
CpMADS06 | CpaF1st03574 | 4 | Chr1:43721431-43725962 | 4532 | 549 | 182 | 9.37 | 20.72 |
CpMADS07 | CpaF1st23187 | 16 | Chr2:34639558-34653544 | 13,987 | 630 | 209 | 6.85 | 24.00 |
CpMADS08 | CpaF1st23193 | 8 | Chr2:34702417-34715817 | 13,401 | 744 | 247 | 9.07 | 28.66 |
CpMADS09 | CpaF1st23405 | 16 | Chr2:36737147-36746074 | 8928 | 735 | 244 | 8.73 | 27.97 |
CpMADS10 | CpaF1st23406 | 15 | Chr2:36758731-36768572 | 9842 | 753 | 250 | 9.14 | 28.55 |
CpMADS11 | CpaF1st23696 | 9 | Chr2:39302712-39326595 | 23,884 | 642 | 213 | 6.03 | 25.01 |
CpMADS12 | CpaF1st24126 | 8 | Chr2:42674312-42685121 | 10,810 | 669 | 222 | 9.39 | 25.48 |
CpMADS13 | CpaF1st24137 | 5 | Chr2:42770150-42773456 | 3307 | 537 | 178 | 6.12 | 20.11 |
CpMADS14 | CpaF1st24796 | 7 | Chr3:5479964-5482602 | 2639 | 635 | 210 | 8.72 | 24.62 |
CpMADS15 | CpaF1st25075 | 19 | Chr3:8607733-8610986 | 3254 | 1041 | 346 | 6.21 | 38.64 |
CpMADS16 | CpaF1st28159 | 7 | Chr4:6573859-6580422 | 6564 | 612 | 203 | 9.49 | 23.44 |
CpMADS17 | CpaF1st29740 | 8 | Chr4:28769871-28783403 | 13,533 | 747 | 248 | 8.73 | 28.66 |
CpMADS18 | CpaF1st30512 | 18 | Chr4:37577074-37585817 | 8744 | 1350 | 449 | 9.31 | 50.77 |
CpMADS19 | CpaF1st31440 | 8 | Chr5:7130147-7137608 | 7462 | 687 | 228 | 5.91 | 25.63 |
CpMADS20 | CpaF1st31579 | 8 | Chr5:8498499-8507170 | 8672 | 765 | 254 | 8.94 | 29.36 |
CpMADS21 | CpaF1st33283 | 10 | Chr5:30392209-30399648 | 7440 | 687 | 228 | 6.13 | 25.69 |
CpMADS22 | CpaF1st34609 | 8 | Chr6:4893230-4907152 | 13,923 | 765 | 254 | 9.96 | 28.86 |
CpMADS23 | CpaF1st34610 | 16 | Chr6:4919734-4928612 | 8879 | 738 | 245 | 9.04 | 28.03 |
CpMADS24 | CpaF1st34822 | 11 | Chr6:6894591-6915492 | 20,902 | 780 | 259 | 6.06 | 29.67 |
CpMADS25 | CpaF1st34828 | 9 | Chr6:6971667-6983725 | 12,059 | 474 | 157 | 7.73 | 18.12 |
CpMADS26 | CpaF1st38580 | 9 | Chr7:21011822-21022154 | 10,333 | 732 | 243 | 9.43 | 27.89 |
CpMADS27 | CpaF1st39393 | 4 | Chr7:29269125-29273783 | 4659 | 732 | 243 | 7.11 | 28.22 |
CpMADS28 | CpaF1st39826 | 8 | Chr7:33119145-33121865 | 2721 | 741 | 246 | 6.99 | 28.08 |
CpMADS29 | CpaF1st43513 | 10 | Chr9:5780448-5787523 | 7076 | 891 | 296 | 8.51 | 33.17 |
CpMADS30 | CpaF1st44872 | 7 | Chr9:24368385-24370857 | 2473 | 678 | 225 | 9.57 | 26.00 |
CpMADS31 | CpaF1st04343 | 10 | Chr10:3501933-3522124 | 20,192 | 1254 | 417 | 8.89 | 48.51 |
CpMADS32 | CpaF1st08032 | 8 | Chr11:12616678-12625690 | 9013 | 690 | 229 | 9.50 | 26.22 |
CpMADS33 | CpaF1st11746 | 8 | Chr12:29355993-29360302 | 4310 | 768 | 255 | 6.04 | 29.06 |
CpMADS34 | CpaF1st12042 | 8 | Chr13:1686053-1691438 | 5386 | 870 | 289 | 8.85 | 33.42 |
CpMADS35 | CpaF1st12071 | 8 | Chr13:1904102-1910372 | 6271 | 870 | 289 | 7.11 | 33.15 |
CpMADS36 | CpaF1st12676 | 15 | Chr13:6960414-6973803 | 13,390 | 768 | 255 | 6.54 | 28.89 |
CpMADS37 | CpaF1st12808 | 9 | Chr13:8140813-8160527 | 19,715 | 738 | 245 | 7.15 | 28.29 |
CpMADS38 | CpaF1st12920 | 26 | Chr13:9350856-9357523 | 6668 | 1215 | 404 | 6.63 | 45.74 |
CpMADS39 | CpaF1st13323 | 7 | Chr13:14729791-14740772 | 10,982 | 1134 | 377 | 6.73 | 43.61 |
CpMADS40 | CpaF1st14025 | 8 | Chr13:25286688-25289400 | 2713 | 1116 | 371 | 5.23 | 40.88 |
CpMADS41 | CpaF1st16532 | 8 | Chr14:26456861-26464798 | 7938 | 768 | 255 | 6.13 | 29.05 |
CpMADS42 | CpaF1st18733 | 8 | Chr16:3824143-3832006 | 7864 | 744 | 247 | 9.22 | 28.86 |
CpMADS43 | CpaF1st19998 | 14 | Chr16:19997527-20003350 | 5824 | 687 | 228 | 9.22 | 26.35 |
CpMADS44 | CpaF1st46308 | 15 | tig00001919:5147437-5153312 | 5876 | 783 | 260 | 8.71 | 29.64 |
CpMADS45 | CpaF1st46310 | 7 | tig00001919:5164160-5180657 | 16,498 | 654 | 217 | 9.36 | 25.20 |
Tandem Duplicated Genes | Ka | Ks | Ka/Ks | Purifying Selection |
---|---|---|---|---|
CpaF1st02480 and CpaF1st02481 | 0.5396 | 2.4927 | 0.2165 | Yes |
CpaF1st23405 and CpaF1st23406 | 0.5344 | 2.2205 | 0.2407 | Yes |
CpaF1st34609 and CpaF1st34610 | 1.0263 | 0.9255 | 1.1090 | No |
CpaF1st34822 and CpaF1st34828 | 1.0524 | 0.7927 | 1.3276 | No |
CpaF1st46308 and CpaF1st46310 | 0.6368 | 2.1786 | 0.2923 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Kong, W.; Wang, Q.; Fu, X. Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus). Int. J. Mol. Sci. 2021, 22, 10128. https://doi.org/10.3390/ijms221810128
Qu Y, Kong W, Wang Q, Fu X. Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus). International Journal of Molecular Sciences. 2021; 22(18):10128. https://doi.org/10.3390/ijms221810128
Chicago/Turabian StyleQu, Yinquan, Weilong Kong, Qian Wang, and Xiangxiang Fu. 2021. "Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus)" International Journal of Molecular Sciences 22, no. 18: 10128. https://doi.org/10.3390/ijms221810128
APA StyleQu, Y., Kong, W., Wang, Q., & Fu, X. (2021). Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus). International Journal of Molecular Sciences, 22(18), 10128. https://doi.org/10.3390/ijms221810128