The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.2. Cytotoxicity
2.3. Apoptosis
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Treatment Procedure
4.3. Cell Viability, Cytotoxicity and Apoptosis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Periodontol. 2018, 89 (Suppl. 1), S267–s290. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Schaller, D.; Håkansson, J.; Wennström, J.L.; Tomasi, C.; Berglundh, T. Peri-implantitis-onset and pattern of progression. J. Clin. Periodontol. 2016, 43, 383–388. [Google Scholar] [CrossRef]
- Klinge, B.; Klinge, A.; Bertl, K.; Stavropoulos, A. Peri-implant diseases. Eur. J. Oral Sci. 2018, 126 (Suppl. 1), 88–94. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Becker, K.; Sager, M. Efficacy of professionally administered plaque removal with or without adjunctive measures for the treatment of peri-implant mucositis. A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42 (Suppl. 16), S202–S213. [Google Scholar] [CrossRef]
- Khoury, F.; Keeve, P.L.; Ramanauskaite, A.; Schwarz, F.; Koo, K.T.; Sculean, A.; Romanos, G. Surgical treatment of peri-implantitis—Consensus report of working group 4. Int. Dent. J. 2019, 69 (Suppl. 2), 18–22. [Google Scholar] [CrossRef] [Green Version]
- Koo, K.T.; Khoury, F.; Keeve, P.L.; Schwarz, F.; Ramanauskaite, A.; Sculean, A.; Romanos, G. Implant Surface Decontamination by Surgical Treatment of Periimplantitis: A Literature Review. Implant Dent. 2019, 28, 173–176. [Google Scholar] [CrossRef]
- Renvert, S.; Polyzois, I.; Claffey, N. Surgical therapy for the control of peri-implantitis. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 84–94. [Google Scholar] [CrossRef]
- Schwarz, F.; Schmucker, A.; Becker, J. Efficacy of alternative or adjunctive measures to conventional treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant Dent. 2015, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daubert, D.M.; Weinstein, B.F. Biofilm as a risk factor in implant treatment. Periodontology 2000 2019, 81, 29–40. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Abrahamsson, I.; Wennström, J.L.; Petzold, M.; Berglundh, T. Surgical treatment of peri-implantitis: 3-year results from a randomized controlled clinical trial. J. Clin. Periodontol. 2017, 44, 1294–1303. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Charalampakis, G.; Abrahamsson, I.; Wennström, J.; Berglundh, T. Adjunctive Systemic and Local Antimicrobial Therapy in the Surgical Treatment of Peri-implantitis: A Randomized Controlled Clinical Trial. J. Dent. Res. 2016, 95, 50–57. [Google Scholar] [CrossRef]
- Carcuac, O.; Abrahamsson, I.; Charalampakis, G.; Berglundh, T. The effect of the local use of chlorhexidine in surgical treatment of experimental peri-implantitis in dogs. J. Clin. Periodontol. 2015, 42, 196–203. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, B.; Liu, Y.; Yang, Z.; Song, J. The efficacy of intra-alveolar 0.2% chlorhexidine gel on alveolar osteitis: A meta-analysis. Oral. Dis. 2017, 23, 598–608. [Google Scholar] [CrossRef]
- Paunio, K.U.; Knuttila, M.; Mielitynen, H. The effect of chlorhexidine gluconate on the formation of experimental granulation tissue. J. Periodontol. 1978, 49, 92–95. [Google Scholar] [CrossRef]
- Cabral, C.T.; Fernandes, M.H. In vitro comparison of chlorhexidine and povidone-iodine on the long-term proliferation and functional activity of human alveolar bone cells. Clin. Oral. Investig. 2007, 11, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Faria, G.; Cardoso, C.R.; Larson, R.E.; Silva, J.S.; Rossi, M.A. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress. Toxicol. Appl. Pharmacol. 2009, 234, 256–265. [Google Scholar] [CrossRef]
- Verdugo, F.; Sáez-Rosón, A.; Uribarri, A.; Martínez-Conde, R.; Cabezas-Olcoz, J.; Moragues, M.D.; Pontón, J. Bone microbial decontamination agents in osseous grafting: An in vitro study with fresh human explants. J. Periodontol. 2011, 82, 863–871. [Google Scholar] [CrossRef]
- Schmidt, J.; Zyba, V.; Jung, K.; Rinke, S.; Haak, R.; Mausberg, R.F.; Ziebolz, D. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells—An in vitro study. Drug Chem. Toxicol. 2016, 39, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Zyba, V.; Jung, K.; Rinke, S.; Haak, R.; Mausberg, R.F.; Ziebolz, D. Effects of octenidine mouth rinse on apoptosis and necrosis of human fibroblasts and epithelial cells-an in vitro study. Drug Chem. Toxicol. 2018, 41, 182–187. [Google Scholar] [CrossRef]
- John, G.; Becker, J.; Schwarz, F. Effects of taurolidine and chlorhexidine on SaOS-2 cells and human gingival fibroblasts grown on implant surfaces. Int. J. Oral Maxillofac. Implant. 2014, 29, 728–734. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.D.; Eick, S.; Moritz, A.; Lussi, A.; Gruber, R. Cytotoxicity and Antimicrobial Activity of Oral Rinses In Vitro. BioMed Res. Int. 2017, 2017, 4019723. [Google Scholar] [CrossRef]
- Coelho, A.S.; Laranjo, M.; Gonçalves, A.C.; Paula, A.; Paulo, S.; Abrantes, A.M.; Caramelo, F.; Ferreira, M.M.; Silva, M.J.; Carrilho, E.; et al. Cytotoxic effects of a chlorhexidine mouthwash and of an enzymatic mouthwash on human gingival fibroblasts. Odontology 2020, 108, 260–270. [Google Scholar] [CrossRef]
- Lee, T.H.; Hu, C.C.; Lee, S.S.; Chou, M.Y.; Chang, Y.C. Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int. Endod. J. 2010, 43, 430–435. [Google Scholar] [CrossRef]
- Liu, J.X.; Werner, J.; Kirsch, T.; Zuckerman, J.D.; Virk, M.S. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. J. Bone Jt. Infect. 2018, 3, 165–172. [Google Scholar] [CrossRef]
- Vörös, P.; Dobrindt, O.; Perka, C.; Windisch, C.; Matziolis, G.; Röhner, E. Human osteoblast damage after antiseptic treatment. Int. Orthop. 2014, 38, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannelli, M.; Chellini, F.; Margheri, M.; Tonelli, P.; Tani, A. Effect of chlorhexidine digluconate on different cell types: A molecular and ultrastructural investigation. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2008, 22, 308–317. [Google Scholar] [CrossRef]
- Rose, M.A.; Garcez, T.; Savic, S.; Garvey, L.H. Chlorhexidine allergy in the perioperative setting: A narrative review. Br. J. Anaesth. 2019, 123, e95–e103. [Google Scholar] [CrossRef]
- Escribano, M.; Herrera, D.; Morante, S.; Teughels, W.; Quirynen, M.; Sanz, M. Efficacy of a low-concentration chlorhexidine mouth rinse in non-compliant periodontitis patients attending a supportive periodontal care programme: A randomized clinical trial. J. Clin. Periodontol. 2010, 37, 266–275. [Google Scholar] [CrossRef]
- Santos, S.; Herrera, D.; López, E.; O’Connor, A.; González, I.; Sanz, M. A randomized clinical trial on the short-term clinical and microbiological effects of the adjunctive use of a 0.05% chlorhexidine mouth rinse for patients in supportive periodontal care. J. Clin. Periodontol. 2004, 31, 45–51. [Google Scholar] [CrossRef]
- Quirynen, M.; Soers, C.; Desnyder, M.; Dekeyser, C.; Pauwels, M.; van Steenberghe, D. A 0.05% cetyl pyridinium chloride/0.05% chlorhexidine mouth rinse during maintenance phase after initial periodontal therapy. J. Clin. Periodontol. 2005, 32, 390–400. [Google Scholar] [CrossRef]
- Bollain, J.; Pulcini, A.; Sanz-Sánchez, I.; Figuero, E.; Alonso, B.; Sanz, M.; Herrera, D. Efficacy of a 0.03% chlorhexidine and 0.05% cetylpyridinium chloride mouth rinse in reducing inflammation around the teeth and implants: A randomized clinical trial. Clin. Oral Investig. 2021, 25, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Pulcini, A.; Bollaín, J.; Sanz-Sánchez, I.; Figuero, E.; Alonso, B.; Sanz, M.; Herrera, D. Clinical effects of the adjunctive use of a 0.03% chlorhexidine and 0.05% cetylpyridinium chloride mouth rinse in the management of peri-implant diseases: A randomized clinical trial. J. Clin. Periodontol. 2019, 46, 342–353. [Google Scholar] [CrossRef] [PubMed]
- de Waal, Y.C.; Raghoebar, G.M.; Huddleston Slater, J.J.; Meijer, H.J.; Winkel, E.G.; van Winkelhoff, A.J. Implant decontamination during surgical peri-implantitis treatment: A randomized, double-blind, placebo-controlled trial. J. Clin. Periodontol. 2013, 40, 186–195. [Google Scholar] [CrossRef] [Green Version]
- de Waal, Y.C.; Raghoebar, G.M.; Meijer, H.J.; Winkel, E.G.; van Winkelhoff, A.J. Implant decontamination with 2% chlorhexidine during surgical peri-implantitis treatment: A randomized, double-blind, controlled trial. Clin. Oral Implant. Res. 2015, 26, 1015–1023. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Brunello, G.; Scotti, L.; Drescher, D.; John, G. Efficacy of 0.05% Chlorhexidine and 0.05% Cetylpyridinium Chloride Mouthwash to Eliminate Living Bacteria on In Situ Collected Biofilms: An In Vitro Study. Antibiotics 2021, 10, 730. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018, 28, 9–21. [Google Scholar] [CrossRef]
- Cummings, B.S.; Wills, L.P.; Schnellmann, R.G. Measurement of cell death in Mammalian cells. Curr. Protoc. Pharmacol. 2012, 56. [Google Scholar] [CrossRef] [Green Version]
- Krampe, B.; Al-Rubeai, M. Cell death in mammalian cell culture: Molecular mechanisms and cell line engineering strategies. Cytotechnology 2010, 62, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Subramani, K.; Wismeijer, D. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: A literature review. Int. J. Oral Maxillofac. Implant. 2012, 27, 1043–1054. [Google Scholar]
- Caiazzo, A.; Canullo, L.; Pesce, P. Consensus Report by the Italian Academy of Osseointegration on the Use of Antibiotics and Antiseptic Agents in Implant Surgery. Int. J. Oral Maxillofac. Implant. 2021, 36, 103–105. [Google Scholar] [CrossRef]
- Solderer, A.; Kaufmann, M.; Hofer, D.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Efficacy of chlorhexidine rinses after periodontal or implant surgery: A systematic review. Clin. Oral Investig. 2019, 23, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Kotsakis, G.A.; Lan, C.; Barbosa, J.; Lill, K.; Chen, R.; Rudney, J.; Aparicio, C. Antimicrobial Agents Used in the Treatment of Peri-Implantitis Alter the Physicochemistry and Cytocompatibility of Titanium Surfaces. J. Periodontol. 2016, 87, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Chellini, F.; Giannelli, M.; Tani, A.; Ballerini, L.; Vallone, L.; Nosi, D.; Zecchi-Orlandini, S.; Sassoli, C. Mesenchymal stromal cell and osteoblast responses to oxidized titanium surfaces pre-treated with λ = 808 nm GaAlAs diode laser or chlorhexidine: In vitro study. Lasers Med. Sci. 2017, 32, 1309–1320. [Google Scholar] [CrossRef]
- Song, I.S.; Lee, J.E.; Park, J.B. The Effects of Various Mouthwashes on Osteoblast Precursor Cells. Open Life Sci. 2019, 14, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Markel, J.F.; Bou-Akl, T.; Dietz, P.; Afsari, A.M. The Effect of Different Irrigation Solutions on the Cytotoxicity and Recovery Potential of Human Osteoblast Cells In Vitro. Arthroplast. Today 2021, 7, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Huh, K.M.; Kang, S.W. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int. J. Mol. Sci. 2021, 22, 2491. [Google Scholar] [CrossRef]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D cell cultures-A comparison of different types of cancer cell cultures. Arch. Med Sci. AMS 2018, 14, 910–919. [Google Scholar] [CrossRef]
- Chen, E.P.; Toksoy, Z.; Davis, B.A.; Geibel, J.P. 3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Front. Bioeng. Biotechnol. 2021, 9, 664188. [Google Scholar] [CrossRef]
- Grosso, A.; Burger, M.G.; Lunger, A.; Schaefer, D.J.; Banfi, A.; Di Maggio, N. It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Front. Bioeng. Biotechnol. 2017, 5, 68. [Google Scholar] [CrossRef]
- Saran, U.; Gemini Piperni, S.; Chatterjee, S. Role of angiogenesis in bone repair. Arch. Biochem. Biophys. 2014, 561, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rafii, S.; Butler, J.M.; Ding, B.S. Angiocrine functions of organ-specific endothelial cells. Nature 2016, 529, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
Grouping Variable | Comparator 1 | Comparator 2 | p-Value (Day 0) | p-Value (Day 3) | p-Value (Day 6) |
---|---|---|---|---|---|
CHX 0.1 | 30 s | 60 s | 0.040 * | - | - |
30 s | 120 s | 0.005 ** | - | - | |
60 s | 120 s | 1.000 | - | - | |
CHX 0.2 | 30 s | 60 s | - | - | - |
30 s | 120 s | - | - | - | |
60 s | 120 s | - | - | - | |
CHX + CPC | 30 s | 60 s | - | - | - |
30 s | 120 s | - | - | - | |
60 s | 120 s | - | - | - | |
NaCl | 30 s | 60 s | - | - | 0.003 ** |
30 s | 120 s | - | - | 1.000 | |
60 s | 120 s | - | - | 0.008 ** | |
30 s | CHX 0.1 | CHX 0.2 | 0.033 * | 1.000 | 1.000 |
CHX 0.1 | CHX + CPC | 1.000 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.000 *** | 0.006 ** | 0.007 ** | |
CHX 0.2 | CHX + CPC | 0.141 | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.499 | 0.007 ** | 0.004 ** | |
CHX + CPC | NaCl | 0.000 *** | 0.001 ** | 0.002 ** | |
60 s | CHX 0.1 | CHX 0.2 | 1.000 | 1.000 | 1.000 |
CHX 0.1 | CHX + CPC | 0.310 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.017 * | 0.001 ** | 0.007 ** | |
CHX 0.2 | CHX + CPC | 0.054 | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.123 | 0.008 ** | 0.000 *** | |
CHX + CPC | NaCl | 0.000 *** | 0.009 ** | 0.016 * | |
120 s | CHX 0.1 | CHX 0.2 | 1.000 | 0.733 | 1.000 |
CHX 0.1 | CHX + CPC | 0.274 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.014 * | 0.000 *** | 0.003 ** | |
CHX 0.2 | CHX + CPC | 0.024 * | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.185 | 0.050 | 0.004 ** | |
CHX + CPC | NaCl | 0.000 *** | 0.004 ** | 0.006 ** |
Grouping Variable | Comparator 1 | Comparator 2 | p-Value (Day 0) | p-Value (Day 3) | p-Value (Day 6) |
---|---|---|---|---|---|
CHX 0.1 | 30 s | 60 s | 0.011 * | - | - |
30 s | 120 s | 0.000 *** | - | - | |
60 s | 120 s | 0.967 | - | - | |
CHX 0.2 | 30 s | 60 s | - | - | 0.250 |
30 s | 120 s | - | - | 0.014 * | |
60 s | 120 s | - | - | 0.819 | |
CHX + CPC | 30 s | 60 s | 0.916 | 0.231 | - |
30 s | 120 s | 0.004 ** | 0.030 * | - | |
60 s | 120 s | 0.085 | 1.000 | - | |
NaCl | 30 s | 60 s | 0.014 * | - | 1.000 |
30 s | 120 s | 0.001 ** | - | 0.027 * | |
60 s | 120 s | 1.000 | - | 0.071 | |
30 s | CHX 0.1 | CHX 0.2 | 0.000 *** | 0.695 | 1.000 |
CHX 0.1 | CHX + CPC | 1.000 | 1.000 | 0.733 | |
CHX 0.1 | NaCl | 0.043 * | 0.002 ** | 0.068 | |
CHX 0.2 | CHX + CPC | 0.002 ** | 0.073 | 1.000 | |
CHX 0.2 | NaCl | 1.000 | 0.241 | 0.002 ** | |
CHX + CPC | NaCl | 0.123 | 0.000 *** | 0.000 *** | |
60 s | CHX 0.1 | CHX 0.2 | 0.559 | 0.695 | 1.000 |
CHX 0.1 | CHX + CPC | 0.054 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.141 | 0.001 ** | 0.009 ** | |
CHX 0.2 | CHX + CPC | 0.000 *** | 0.472 | 1.000 | |
CHX 0.2 | NaCl | 0.000 *** | 0.131 | 0.001 ** | |
CHX + CPC | NaCl | 1.000 | 0.000 *** | 0.006 ** | |
120 s | CHX 0.1 | CHX 0.2 | 0.420 | 1.000 | 1.000 |
CHX 0.1 | CHX + CPC | 0.947 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.006 ** | 0.001 ** | 0.033 * | |
CHX 0.2 | CHX + CPC | 0.008 ** | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.000 *** | 0.017 * | 0.001 ** | |
CHX + CPC | NaCl | 0.373 | 0.005 ** | 0.002 ** |
Grouping Variable | Comparator 1 | Comparator 2 | p-Value (Day 0) | p-Value (Day 3) | p-Value (Day 6) |
---|---|---|---|---|---|
CHX 0.1 | 30 s | 60 s | - | - | 0.005 ** |
30 s | 120 s | - | - | 0.003 ** | |
60 s | 120 s | - | - | 1.000 | |
CHX 0.2 | 30 s | 60 s | - | - | - |
30 s | 120 s | - | - | - | |
60 s | 120 s | - | - | - | |
CHX + CPC | 30 s | 60 s | - | 0.078 | 0.915 |
30 s | 120 s | - | 0.002 ** | 0.003 ** | |
60 s | 120 s | - | 0.730 | 0.074 | |
NaCl | 30 s | 60 s | - | 0.121 | 1.000 |
30 s | 120 s | - | 0.014 * | 0.004 ** | |
60 s | 120 s | - | 1.000 | 0.009 ** | |
30 s | CHX 0.1 | CHX 0.2 | 1.000 | 1.000 | 0.320 |
CHX 0.1 | CHX + CPC | 1.000 | 1.000 | 0.173 | |
CHX 0.1 | NaCl | 0.004 ** | 0.004 ** | 0.000 *** | |
CHX 0.2 | CHX + CPC | 1.000 | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.001 ** | 0.006 ** | 0.026 * | |
CHX + CPC | NaCl | 0.010 * | 0.002 ** | 0.056 | |
60 s | CHX 0.1 | CHX 0.2 | 1.000 | 1.000 | 1.000 |
CHX 0.1 | CHX + CPC | 1.000 | 1.000 | 1.000 | |
CHX 0.1 | NaCl | 0.006 ** | 0.002 ** | 0.048 * | |
CHX 0.2 | CHX + CPC | 1.000 | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.006 ** | 0.011 * | 0.001 ** | |
CHX + CPC | NaCl | 0.002 ** | 0.002 ** | 0.002 ** | |
120 s | CHX 0.1 | CHX 0.2 | 1.000 | 1.000 | 0.878 |
CHX 0.1 | CHX + CPC | 1.000 | 0.472 | 1.000 | |
CHX 0.1 | NaCl | 0.020 * | 0.000 *** | 0.036 * | |
CHX 0.2 | CHX + CPC | 1.000 | 1.000 | 1.000 | |
CHX 0.2 | NaCl | 0.006 ** | 0.004 ** | 0.000 *** | |
CHX + CPC | NaCl | 0.000 *** | 0.068 | 0.006 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunello, G.; Becker, K.; Scotti, L.; Drescher, D.; Becker, J.; John, G. The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study. Int. J. Mol. Sci. 2021, 22, 9986. https://doi.org/10.3390/ijms22189986
Brunello G, Becker K, Scotti L, Drescher D, Becker J, John G. The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study. International Journal of Molecular Sciences. 2021; 22(18):9986. https://doi.org/10.3390/ijms22189986
Chicago/Turabian StyleBrunello, Giulia, Kathrin Becker, Luisa Scotti, Dieter Drescher, Jürgen Becker, and Gordon John. 2021. "The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study" International Journal of Molecular Sciences 22, no. 18: 9986. https://doi.org/10.3390/ijms22189986
APA StyleBrunello, G., Becker, K., Scotti, L., Drescher, D., Becker, J., & John, G. (2021). The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study. International Journal of Molecular Sciences, 22(18), 9986. https://doi.org/10.3390/ijms22189986