Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis of the IBU-Sorbitol Ester
2.2. Preliminary Experiment: Selection of a Suitable Organic Solvent
2.3. Optimization of the Lipase-Catalyzed Synthesis of IBU-Sorbitol
2.3.1. The Effect of Enzyme Concentration
2.3.2. The Effect of Initial Water Content
2.3.3. The Effect of Temperature
2.3.4. The Effect of Stirring Speed
2.3.5. The Effect of Substrate Concentration
2.3.6. The Effect of Reaction Time
2.4. IBU-Sorbitol Ester: MS Spectroscopy Characterization
3. Materials and Methods
3.1. Materials
3.2. Chemical Synthesis of the IBU-Sorbitol Ester
3.3. Enzymatic Synthesis of IBU-Sorbitol Ester
3.4. Lipase Activity
3.5. Effects of the Esterification Parameters
3.6. Purification and Spectroscopic Characterization of IBU-Sorbitol Ester
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; Fitzgerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Ibuprofen Pathways. Pharm. Genom. 2015, 25, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Adam, S.S.; Cliffe, E.E.; Lessel, B.; Nicholson, J.S. Some Biological Properties of 2-(4-Isobutylphenyl)-Propionic Acid. J. Pharm. Sci. 1967, 56, 1686. [Google Scholar] [CrossRef]
- Adams, S.S.; Bresloff, P.; Mason, C.G. Pharmacological Differences between the Optical Isomers of Ibuprofen: Evidence for Metabolic Inversion of the (-)-isomer. J. Pharm. Pharm. 1976, 28, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, X. Comparison of the Efficacy and Safety of Non-Steroidal Anti-Inflammatory Drugs for Patients with Primary Dysmenorrhea: A Network Meta-Analysis. Mol. Pain 2018, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandreli, M.G.; Vadachkoriia, N.R.; Gumberidze, N.S.; Mandzhavidze, N.A. Pain Management in Dentistry. Georgian Med. News 2013, 225, 44–49. [Google Scholar] [CrossRef]
- Gigante, A.; Tagarro, I. Non-Steroidal Anti-Inflammatory Drugs and Gastroprotection with Proton Pump Inhibitors: A Focus on Ketoprofen/Omeprazole. Clin. Drug Investig. 2012, 32, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K.D. Anti-Inflammatory Drugs in the 21st Century. Subcell. Biochem. 2007, 42, 3–27. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Sattari, S.; Jamali, F.; Mitchell, A.G. Ibuprofen Racemate and Enantiomers: Phase Diagram, Solubility and Thermodynamic Studies. Int. J. Pharm. 1992, 87, 95–104. [Google Scholar] [CrossRef]
- Agents, N.A.; Sharp, M.; Division, L.; Aspects, I. Non-Steroidal Anti-Inflammatory Agents. Ann. Rep. Med. Chem 1964, 3, 215. [Google Scholar]
- Evans, A.M. Clinical Rheumatology Comparative Pharmacology of S(+)-Ibuprofen and (RS)-Ibuprofen. Clin. Rheumatol. 2001, 20, 9–14. [Google Scholar] [CrossRef]
- Pierce, C.A.; Voss, B. Efficacy and Safety of Ibuprofen and Acetaminophen in Children and Adults: A Meta-Analysis and Qualitative Review. Ann. Pharm. 2010, 44, 489–506. [Google Scholar] [CrossRef]
- Rainsford, K.D. Ibuprofen: Pharmacology, Efficacy and Safety. Inflammopharmacology 2009, 17, 275–342. [Google Scholar] [CrossRef] [PubMed]
- Koenigsknecht, M.J.; Baker, J.R.; Wen, B.; Frances, A.; Zhang, H.; Yu, A.; Zhao, T.; Tsume, Y.; Pai, M.P.; Bleske, B.E.; et al. In Vivo Dissolution and Systemic Absorption of Immediate Release Ibuprofen in Human Gastrointestinal Tract under Fed and Fasted Conditions. Mol. Pharm. 2017, 14, 4295–4304. [Google Scholar] [CrossRef] [PubMed]
- Eraga, S.O.; Arhewoh, M.I.; Chibuogwu, R.N.; Iwuagwu, M.A. A Comparative UV-HPLC Analysis of Ten Brands of Ibuprofen Tablets. Asian Pac. J. Trop. Biomed. 2015, 5, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Yalkowsky, S.; Dannenfelser, R. The AQUASOL DATAbASE of Aqueous Solubility; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Stoyanova, K.; Vinarov, Z.; Tcholakova, S. Improving Ibuprofen Solubility by Surfactant-Facilitated Self-Assembly into Mixed Micelles. J. Drug Deliv. Sci. Technol. 2016, 36, 208–215. [Google Scholar] [CrossRef]
- Klueglich, M.; Ring, A.; Scheuerer, S.; Trommeshauser, D.; Schuijt, C.; Liepold, B.; Berndl, G. Ibuprofen Extrudate, a Novel, Rapidly Dissolving Ibuprofen Formulation: Relative Bioavailability Compared to Ibuprofen Lysinate and Regular Ibuprofen, and Food Effect on All Formulations. J. Clin. Pharm. 2005, 45, 1055–1061. [Google Scholar] [CrossRef]
- Modi, J.D.; Patel, J.K. Nanoemulsion-Based Gel Formulation of Aceclofenac for Topical Delivery. Int. J. 2011, 1, 6–12. [Google Scholar]
- Boyd, B.J.; Bergström, C.A.S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Bernkop-Schnürch, A.; Shrestha, N.; Préat, V.; et al. Successful Oral Delivery of Poorly Water-Soluble Drugs Both Depends on the Intraluminal Behavior of Drugs and of Appropriate Advanced Drug Delivery Systems. Eur. J. Pharm. Sci. 2019, 137, 104967. [Google Scholar] [CrossRef]
- Lipinski, C. Avoiding Investment in Doomed Drugs. Curr. Drug Discov. 2001, 1, 17–19. [Google Scholar]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in Drug Delivery: An Updated Review. Aaps Pharmscitech 2005, 6, 329–357. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legg, T.J.; Laurent, A.L.; Leyva, R.; Kellstein, D. Ibuprofen Sodium Is Absorbed Faster than Standard Ibuprofen Tablets: Results of Two Open-Label, Randomized, Crossover Pharmacokinetic Studies. Drugs R D 2014, 14, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levis, K.A.; Lane, M.E.; Corrigan, O.I. Effect of Buffer Media Composition on the Solubility and Effective Permeability Coefficient of Ibuprofen. Int. J. Pharm. 2003, 253, 49–59. [Google Scholar] [CrossRef]
- Stella, V.J.; Nti-Addae, K.W. Prodrug Strategies to Overcome Poor Water Solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef]
- Redasani, V.K.; Bari, S.B. Prodrug Design: Perspectives, Approaches and Applications in Medicinal Chemistry; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Cioli, V.; Putzolu, S.; Rossi, V.; Corradino, C. A Toxicological and Pharmacological Study of Ibuprofen Guaiacol Ester (AF 2259) in the Rat. Toxicol. Appl. Pharm. 1980, 54, 332–339. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, B.; Wu, X.; Li, X.; Liu, Q.; Jin, X.; Guo, L.; Hai, L.; Wu, Y. Design, Synthesis and Biological Evaluation of Brain Targeting l-Ascorbic Acid Prodrugs of Ibuprofen with “Lock-in” Function. Eur. J. Med. Chem. 2014, 82, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Halen, P.K.; Chagti, K.K.; Giridhar, R.; Yadav, M.R. Combining Anticholinergic and Anti-Inflammatory Activities into a Single Moiety: A Novel Approach to Reduce Gastrointestinal Toxicity of Ibuprofen and Ketoprofen. Chem. Biol. Drug Des. 2007, 70, 450–455. [Google Scholar] [CrossRef]
- Chavez-Flores, D.; Salvador, J.M. Facile Conversion of Racemic Ibuprofen to (S)-Ibuprofen. Tetrahedron Asymmetry 2012, 23, 237–239. [Google Scholar] [CrossRef]
- Brady, D. Green Catalysis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
- Yadav, G.D.; Kamble, M.P. A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. Int. J. Chem. React. Eng. 2018, 16, 1–14. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Kharisov, B.I.; González, C.M.O.; Méndez, Y.P.; López, I. Greener Synthesis of Chemical Compounds and Materials. R. Soc. Open Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.P.; Wang, Y.J.; Zheng, Y.G. Enantioselective Hydrolysis of Diethyl 3-Hydroxyglutarate to Ethyl (S)-3-Hydroxyglutarate by Immobilized Candida antarctica Lipase B. J. Mol. Catal. B Enzym. 2010, 66, 90–94. [Google Scholar] [CrossRef]
- Adlercreutz, P. Comparison of Lipases and Glycoside Hydrolases as Catalysts in Synthesis Reactions. Appl. Microbiol. Biotechnol. 2017, 101, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.; Valero, F.; Lafuente, J.; Solà, C. Highly Enantioselective Esterification of Racemic Ibuprofen in a Packed Bed Reactor Using Immobilised Rhizomucor miehei Lipase. Enzym. Microb. Technol. 2000, 27, 157–166. [Google Scholar] [CrossRef]
- Chen, J.C.; Tsai, S.W. Enantioselective Synthesis of (s)-Ibuprofen Ester Prodrug in Cyclohexane by Candida rugosa Lipase Immobilized on Accurel MP1000. Biotechnol. Prog. 2000, 16, 986–992. [Google Scholar] [CrossRef]
- Ong, H.R.; Ganasen, P.; Kalam, A.; Ethiraj, B.; Mahmud, M.S.; Khan, M.R. Effect of Light Irradiation on Esterification of Oleic Acid with Ethanol Catalyzed by Immobilized Pseudomonas cepacia Lipase. Can. J. Chem. Eng. 2019, 97, 2876–2882. [Google Scholar] [CrossRef]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; Dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “Perfect” Lipase Immobilized Biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Du, W.; Dai, L.; Liu, D. Study on Lipozyme TL IM-Catalyzed Esterification of Oleic Acid and Glycerol for 1,3-Diolein Preparation. J. Mol. Catal. B Enzym. 2016, 127, 11–17. [Google Scholar] [CrossRef]
- Gamayurova, V.; Shnaider, K. Enzymatic Synthesis of Fatty Esters by Lipase from Porcine Pancreas. J. Thermodyn. Catal. 2016, 7, 161. [Google Scholar] [CrossRef]
- Bourne, Y.; Martinez, C.; Kerfelec, B.; Lombardo, D.; Chapus, C.; Cambillau, C. Horse Pancreatic Lipase: The Crystal Structure Refined at 2.3 Å Resolution. J. Mol. Biol. 1994, 709–732. [Google Scholar] [CrossRef]
- Byun, H.G.; Eom, T.K.; Jung, W.K.; Kim, S.K. Lipase Catalyzed Production of Monoacylglycerols by the Esterification of Fish Oil Fatty Acids with Glycerol. Biotechnol. Bioprocess Eng. 2007, 12, 491–496. [Google Scholar] [CrossRef]
- Kiran, K.R.; Suresh Babu, C.V.; Divakar, S. Thermostability of Porcine Pancreas Lipase in Non-Aqueous Media. Process Biochem. 2001, 36, 885–892. [Google Scholar] [CrossRef]
- Kiran, K.R.; Divakar, S. Lipase Catalyzed Synthesis of Organic Acid Esters of Lactic Acid in Non-Aqueous Media. J. Biotechnol. 2001, 87, 109–121. [Google Scholar] [CrossRef]
- Ong, A.L.; Kamaruddin, A.H.; Bhatia, S.; Long, W.S.; Lim, S.T.; Kumari, R. Performance of Free Candida antarctica Lipase B in the Enantioselective Esterification of (R)-Ketoprofen. Enzym. Microb. Technol. 2006, 39, 924–929. [Google Scholar] [CrossRef]
- Ravelo, M.; Fuente, E.; Blanco, Á.; Ladero, M.; García-Ochoa, F. Esterification of Glycerol and Ibuprofen in Solventless Media Catalyzed by Free CALB: Kinetic Modelling. Biochem. Eng. J. 2015, 101, 228–236. [Google Scholar] [CrossRef]
- Xin, J.Y.; Sun, L.R.; Chen, S.M.; Wang, Y.; Xia, C.G. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef]
- Morrone, R.; D’Antona, N.; Lambusta, D.; Nicolosi, G. Biocatalyzed Irreversible Esterification in the Preparation of S-Naproxen. J. Mol. Catal. B Enzym. 2010, 65, 49–51. [Google Scholar] [CrossRef]
- Ramachandran, G.; Ananthanarayan, L. Optical Resolution of (R, S)-Ibuprofen in Organic Solvent by Porcine Pancreatic Lipase Catalyzed Enantioselective Esterification. Indian J. Biotechnol. 2008, 7, 94–98. [Google Scholar]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at Interfaces: A Review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kanwar, S.S. Organic Solvent Tolerant Lipases and Applications. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, E.; Camacho, F.; Luzón, G.; Fernández-Serrano, M.; García-Román, M. Kinetics of the Enzymatic Hydrolysis of Triglycerides in o/w Emulsions. Study of the Initial Rates and the Reaction Time Course. Biochem. Eng. J. 2008, 40, 473–484. [Google Scholar] [CrossRef]
- Valivety, R.H.; Halling, P.J.; Macrae, A.R. Reaction Rate with Suspended Lipase Catalyst Shows Similar Dependence on Water Activity in Different Organic Solvents. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1992, 1118, 218–222. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halling, P.J.; Finney, J.L.; Ho, M.W.; Franks, F.; Littlechild, J.A. What Can We Learn by Studying Enzymes in Non-Aqueous Media? Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y. Enzymatic Catalysis in Non-Aqueous Solvents. Shengwu Gongcheng Xuebao/Chin. J. Biotechnol. 2009, 25, 1789–1794. [Google Scholar]
- Bracco, P.; van Midden, N.; Arango, E.; Torrelo, G.; Ferrario, V.; Gardossi, L.; Hanefeld, U. Bacillus subtilis Lipase a—Lipase or Esterase? Catalysts 2020, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Wehtje, E.; Adlercreutz, P. Water Activity and Substrate Concentration Effects on Lipase Activity. Biotechnol. Bioeng. 1997, 55, 798–806. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Tan, T. Effects of Alcohol and Solvent on the Performance of Lipase from Candida sp. in Enantioselective Esterification of Racemic Ibuprofen. J. Mol. Catal. B Enzym. 2009, 56, 126–130. [Google Scholar] [CrossRef]
- Teo, G.; Suzuki, Y.; Uratsu, S.L.; Lampinen, B.; Ormonde, N.; Hu, W.K.; DeJong, T.M.; Dandekar, A.M. Silencing Leaf Sorbital Synthesis Alters Long-Distance Partitioning and Apple Fruit Quality. Proc. Natl. Acad. Sci. USA 2006, 103, 18842–18847. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.R.; Garrote, R.L. The Effect of Two Cryoprotectant Mixtures on Frozen Surubí Surimi. Braz. J. Chem. Eng. 2002, 19, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Panel, E.; Nda, A. Scientific Opinion on the Substantiation of Health Claims Related to the Sugar Replacers Xylitol, Sorbitol, Mannitol, Maltitol, Lactitol, Isomalt, Erythritol, D-Tagatose, Isomaltulose, Sucralose and Polydextrose and Maintenance of Tooth Mineralisation By decreasing tooth demineralisation (ID 463, 464, 563, 618, 647, 1182, 1591, 2907, 2921, 4300), and reduction of post-prandial glycaemic responses (ID 617, 619, 669, 1590, 1762, 2903, 2908, 2920) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9. [Google Scholar] [CrossRef]
- Dash, R.P.; Srinivas, N.R.; Babu, R.J. Use of Sorbitol as Pharmaceutical Excipient in the Present Day Formulations–Issues and Challenges for Drug Absorption and Bioavailability. Drug Dev. Ind. Pharm. 2019, 45, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Chamarthy, S.P.; Pinal, R. Plasticizer Concentration and the Performance of a Diffusion-Controlled Polymeric Drug Delivery System. Colloids Surf. A Phys. Eng. Asp. 2008, 331, 25–30. [Google Scholar] [CrossRef]
- Lockwood, S.F.; O’Malley, S.; Watumull, D.G.; Hix, L.M.; Jackson, H.; Nadolski, G. Carotenoid Ester Analogs or Derivatives for the Inhibition and Amelioration of Ischemic Reperfusion Injury. US20050037995, 17 February 2005. [Google Scholar]
- Jahangiri, A.; Møller, A.H.; Danielsen, M.; Madsen, B.; Joernsgaard, B.; Vaerbak, S.; Adlercreutz, P.; Dalsgaard, T.K. Hydrophilization of Bixin by Lipase-Catalyzed Transesterification with Sorbitol. Food Chem. 2018, 268, 203–209. [Google Scholar] [CrossRef]
- Hirakawa, H.; Kamiya, N.; Kawarabayashi, Y.; Nagamune, T. Log P Effect of Organic Solvents on a Thermophilic Alcohol Dehydrogenase. Biochim. Biophys. Acta Proteins Proteom. 2005, 1748, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Douša, M.; Meca, L.; Gibala, P.; Jirman, J.; Tkadlecová, M.; Srbek, J.; Šalandová, J.; Kovalčíková, E.; Břicháč, J. Esterification of Ibuprofen in Soft Gelatin Capsules Formulations-Identification, Synthesis and Liquid Chromatography Separation of the Degradation Products. J. Chromatogr. Sci. 2017, 55, 790–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappaterra, F.; Summa, D.; Semeraro, B.; Buzzi, R.; Trapella, C.; Ladero, M.; Costa, S.; Tamburini, E. Enzymatic Esterification as Potential Strategy to Enhance the Sorbic Acid Behavior as Food and Beverage Preservative. Fermentation 2020, 6, 96. [Google Scholar] [CrossRef]
- Trodler, P.; Pleiss, J. Modeling Structure and Flexibility of Candida antarctica Lipase B in Organic Solvents. BMC Struct. Biol. 2008, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Reetz, M.T. Lipases as Practical Biocatalysts. Curr. Opin. Chem. Biol. 2002, 6, 145–150. [Google Scholar] [CrossRef]
- Mendes, A.A.; Oliveira, P.C.; De Castro, H.F. Properties and Biotechnological Applications of Porcine Pancreatic Lipase. J. Mol. Catal. B Enzym. 2012, 78, 119–134. [Google Scholar] [CrossRef]
- Sarda, L.; Desnuelle, P. Action de La Lipase Pancréatique Sur Les Esters En Émulsion. BBA Biochim. Biophys. Acta 1958, 30, 513–521. [Google Scholar] [CrossRef]
- Chen, J.P. Production of Ethyl Butyrate Using Gel-Entrapped Candida cylindracea Lipase. J. Ferment. Bioeng. 1996, 82, 404–407. [Google Scholar] [CrossRef]
- Wescott, C.R.; Klibanov, A.M. Solvent Variation Inverts Substrate Specificity of an Enzyme. J. Am. Chem. Soc. 1993, 115, 1629–1631. [Google Scholar] [CrossRef]
- Gomes, F.M.; Pereira, E.B.; de Castro, H.F. Immobilization of Lipase on Chitin and Its Use in Nonconventional Biocatalysis. Biomacromolecules 2004, 5, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ravelo, M.; Esteban, J.; Ladero, M.; García-Ochoa, F. Enzymatic Synthesis of Ibuprofen Monoglycerides Catalyzed by Free: Candida antarctica Lipase B in a Toluene-Glycerol Biphasic Medium. RSC Adv. 2016, 6, 69658–69669. [Google Scholar] [CrossRef]
- Akoh, C.C.; Cooper, C.; Nwosu, C.V. Lipase G-Catalyzed Synthesis of Monoglycerides in Organic Solvent and Analysis by HPLC. J. Am. Oil Chem. Soc. 1992, 69, 257–260. [Google Scholar] [CrossRef]
- Scheytt, T.; Mersmann, P.; Lindstädt, R.; Heberer, T. 1-Octanol/Water Partition Coefficients of 5 Pharmaceuticals from Human Medical Care: Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, and Propyphenazone. Water Air Soil Pollut. 2005, 165, 3–11. [Google Scholar] [CrossRef]
- Ben Salah, R.; Ghamghui, H.; Miled, N.; Mejdoub, H.; Gargouri, Y. Production of Butyl Acetate Ester by Lipase from Novel Strain of Rhizopus oryzae. J. Biosci. Bioeng. 2007, 103, 368–372. [Google Scholar] [CrossRef]
- Hazarika, S.; Goswami, P.; Dutta, N.N.; Hazarika, A.K. Ethyl Oleate Synthesis by Porcine Pancreatic Lipase in Organic Solvents. Chem. Eng. J. 2002, 85, 61–68. [Google Scholar] [CrossRef]
- Yesiloglu, Y.; Kilic, I. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. J. Am. Oil Chem. Soc. 2004, 81, 281–284. [Google Scholar] [CrossRef]
- Lie Ken Jie, M.S.F.; Xun, F. Studies of Lipase-Catalyzed Esterification Reactions of Some Acetylenic Fatty Acids. Lipids 1998, 33, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.D.O.; Contesini, F.J.; Ikegaki, M. Enzymatic Resolution of (R,S)-Ibuprofen and (R,S)-Ketoprofen by Microbial Lipases from Native and Commercial Sources. Braz. J. Microbiol. 2006, 37, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Zaks, A.; Klibanov, A.M. The Effect of Water on Enzyme Action in Organic Media. J. Biol. Chem. 1988, 263, 8017–8021. [Google Scholar] [CrossRef]
- Oladepo, D.K.; Hauling, P.J.; Larsen, V.F. Reaction Rates in Organic Media Show Similar Dependence on Water Activity with Lipase Catalyst Immobilized on Different Supports. Biocatal. Biotransform. 1994, 8, 283–287. [Google Scholar] [CrossRef]
- Zhi, W.; Hu, Y.; Yang, W.; Kai, Y.; Cao, Z. Measurement and Correlation of Solubility of D-Sorbitol in Different Solvents. J. Mol. Liq. 2013, 187, 201–205. [Google Scholar] [CrossRef]
- Garzón, L.C.; Martínez, F. Temperature Dependence of Solubility for Ibuprofen in Some Organic and Aqueous Solvents. J. Solut. Chem. 2004, 33, 1379–1395. [Google Scholar] [CrossRef]
- Wescott, C.R.; Klibanov, A.M. Thermodynamic Analysis of Solvent Effect on Substrate Specificity of Lyophilized Enzymes Suspended in Organic Media. Biotechnol. Bioeng. 1997, 56, 340–344. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. Enzymatic Catalysis in Organic Media at 100 °C. Science 1984, 224, 1249–1251. [Google Scholar] [CrossRef]
- Gog, A.; Roman, M.; Toşa, M.; Paizs, C.; Irimie, F.D. Biodiesel Production Using Enzymatic Transesterification—Current State and Perspectives. Renew. Energy 2012, 39, 10–16. [Google Scholar] [CrossRef]
- Vaysse, L.; Ly, A.; Moulin, G.; Dubreucq, E. Chain-Length Selectivity of Various Lipases during Hydrolysis, Esterification and Alcoholysis in Biphasic Aqueous Medium. Enzym. Microb. Technol. 2002, 31, 648–655. [Google Scholar] [CrossRef]
- Gogoi, S.; Pathak, M.G.; Dutta, A.; Dutta, N.N. Porcine Pancreas Lipase Catalyzed Synthesis of Lauryl Laurate in Organic Solvent Media: A Kinetic Study. Indian J. Geo-Mar. Sci. 2008, 45, 192–197. [Google Scholar]
- Compton, D.L.; Laszlo, J.A.; Berhow, M.A. Lipase-Catalyzed Synthesis of Ferulate Esters. J. Am. Oil Chem. Soc. 2000, 77, 513–519. [Google Scholar] [CrossRef]
- Verger, R.; Mieras, M.C.E.; De Haas, G.H. Action of Phospholipase A at Interfaces. J. Biol. Chem. 1973, 248, 4023–4034. [Google Scholar] [CrossRef]
- Gandhi, N.N.; Sawant, S.B.; Joshi, J.B. Specificity of a Lipase in Ester Synthesis: Effect of Alcohol. Biotechnol. Prog. 1995, 11, 282–287. [Google Scholar] [CrossRef]
- Saǧiroǧlu, A.; Kilinç, A.; Telefoncu, A. Preparation and Properties of Lipases Immobilized on Different Supports. Artif. Cells. Blood Substit. Immobil. Biotechnol. 2004, 32, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Pencreac’h, G.; Leullier, M.; Baratti, J.C. Properties of Free and Immobilized Lipase from Pseudomonas cepacia. Biotechnol. Bioeng. 1997, 56, 181–189. [Google Scholar] [CrossRef]
- Komiya, S.; Sako, A.; Kosuge, H.; Hirano, M.; Komine, N. Mechanical Stirring Speed in Water/Hexane Biphasic Catalyst Controls Regioselectivity of Pd-Catalyzed Allylation Reaction. Chem. Lett. 2008, 37, 640–641. [Google Scholar] [CrossRef]
- Brockerhoff, H. Substrate Specificity of Pancreatic Lipase. BBA Enzym. 1968, 159, 296–303. [Google Scholar] [CrossRef]
- Cygler, M.; Schrag, J.D.; Bouthillier, F.; Grochulski, P.; Kazlauskas, R.J.; Serreq, A.N.; Gupta, A.K.; Rubin, B. A Structural Basis for the Chiral Preferences of Lipases. J. Am. Chem. Soc. 1994, 116, 3180–3186. [Google Scholar] [CrossRef]
- Delhomme, C.; Goh, S.L.M.; Kühn, F.E.; Weuster-Botz, D. Esterification of Bio-Based Succinic Acid in Biphasic Systems: Comparison of Chemical and Biological Catalysts. J. Mol. Catal. B Enzym. 2012, 80, 39–47. [Google Scholar] [CrossRef]
- Yahya, A.R.M.; Anderson, W.A.; Moo-young, M. Ester Synthesis in Lipase-Catalyzed Reactions. Enzym. Microb. Technol. 1998, 23, 438–450. [Google Scholar] [CrossRef]
- Ozyilmaz, G.; Gezer, E. Production of Aroma Esters by Immobilized Candida rugosa and Porcine Pancreatic Lipase into Calcium Alginate Gel. J. Mol. Catal. B Enzym. 2010, 64, 140–145. [Google Scholar] [CrossRef]
- Gardossi, L.; Poulsen, P.B.; Ballesteros, A.; Hult, K.; Švedas, V.K.; Vasić-Rački, D.; Carrea, G.; Magnusson, A.; Schmid, A.; Wohlgemuth, R.; et al. Guidelines for Reporting of Biocatalytic Reactions. Trends Biotechnol. 2010, 28, 171–180. [Google Scholar] [CrossRef]
- Goderis, H.L.; Ampe, G.; Feyten, M.P.; Fouwé, B.L.; Guffens, W.M.; Van Cauwenbergh, S.M.; Tobback, P.P. Lipase-catalyzed Ester Exchange Reactions in Organic Media with Controlled Humidity. Biotechnol. Bioeng. 1987, 30, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Ncube, I.; Gitlesen, T.; Adlercreutz, P.; Read, J.S.; Mattiasson, B. Fatty Acid Selectivity of a Lipase Purified from Vernonia Galamensis Seed. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 1995, 1257, 149–156. [Google Scholar] [CrossRef]
Solvent | LogP | Solubility in Water | Conversion (%) |
---|---|---|---|
Hexane | 3.9 | 9.5 mg mL−1 | 18 ± 1.3 |
Toluene | 2.43 | 526 mg mL−1 | 11 ± 1.1 |
Benzene | 2.13 | 1790 mg mL−1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappaterra, F.; Rodriguez, M.E.M.; Summa, D.; Semeraro, B.; Costa, S.; Tamburini, E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. Int. J. Mol. Sci. 2021, 22, 3066. https://doi.org/10.3390/ijms22063066
Zappaterra F, Rodriguez MEM, Summa D, Semeraro B, Costa S, Tamburini E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. International Journal of Molecular Sciences. 2021; 22(6):3066. https://doi.org/10.3390/ijms22063066
Chicago/Turabian StyleZappaterra, Federico, Maria Elena Maldonado Rodriguez, Daniela Summa, Bruno Semeraro, Stefania Costa, and Elena Tamburini. 2021. "Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media" International Journal of Molecular Sciences 22, no. 6: 3066. https://doi.org/10.3390/ijms22063066
APA StyleZappaterra, F., Rodriguez, M. E. M., Summa, D., Semeraro, B., Costa, S., & Tamburini, E. (2021). Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. International Journal of Molecular Sciences, 22(6), 3066. https://doi.org/10.3390/ijms22063066