Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy
Abstract
:1. Introduction
2. Results
2.1. Exclusions and Gross Measurements
2.2. Effect of CPCs on LV Function Measured by Echocardiography
2.3. Hemodynamic Measurements
2.4. Morphometric Analysis
2.5. LV Fibrosis
2.6. Cardiomyocyte Hypertrophy
2.7. Myocardial Content of Inflammatory Cells
2.8. Cell Engraftment and Proliferation
3. Discussion
4. Materials and Methods
4.1. Isolation and Culture of C-kit-Positive Cardiac Cells (CPCs)
4.2. Mouse Model of Ischemic Cardiomyopathy
4.3. Treatment Protocol
4.4. Echo-Guided Intraventricular Injection
4.5. Echocardiographic Studies
4.6. Hemodynamic Studies
4.7. Histological Studies
4.8. Immunohistochemistry
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPC | c-kit-positive cardiac cell |
CMC | Cardiac mesenchymal cell |
MI | Myocardial infarction |
LV | Left ventricle |
LVEDV | End-diastolic LV volume |
LVESV | End-systolic LV volume |
SV | Stroke volume |
EF | Ejection fraction |
PV | Pressure–volume |
WGA | Wheat germ agglutinin |
References
- Bolli, R.; Kahlon, A. Time to end the war on cell therapy. Eur. J. Heart Fail. 2020, 22, 893–897. [Google Scholar] [CrossRef]
- Bolli, R. Repeated Cell Therapy: A Paradigm Shift Whose Time Has Come. Circ. Res. 2017, 120, 1072–1074. [Google Scholar] [CrossRef]
- Wysoczynski, M.; Khan, A.; Bolli, R. New Paradigms in Cell Therapy: Repeated Dosing, Intravenous Delivery, Immunomodulatory Actions, and New Cell Types. Circ. Res. 2018, 123, 138–158. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.U.; Guo, Y.; Li, Q.-H.; Cao, P.; Al-Maqtari, T.; Vajravelu, B.N.; Du, J.; Book, M.J.; Zhu, X.; Nong, Y.; et al. c-kit+ Cardiac Stem Cells Alleviate Post-Myocardial Infarction Left Ventricular Dysfunction Despite Poor Engraftment and Negligible Retention in the Recipient Heart. PLoS ONE 2014, 9, e96725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Wysoczynski, M.; Nong, Y.; Tomlin, A.; Zhu, X.; Gumpert, A.M.; Nasr, M.; Muthusamy, S.; Li, H.; Book, M.; et al. Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res. Cardiol. 2017, 112, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.L.; Li, Q.; Rokosh, G.; Sanganalmath, S.K.; Chen, N.; Ou, Q.; Stowers, H.; Hunt, G.; Bolli, R. Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year. Circ. Res. 2016, 118, 1091–1105. [Google Scholar] [PubMed] [Green Version]
- Guo, Y.; Nong, Y.; Li, Q.; Tomlin, A.; Kahlon, A.; Gumpert, A.; Slezak, J.; Zhu, X.; Bolli, R. Comparison of One and Three Intraventricular Injections of Cardiac Progenitor Cells in a Murine Model of Chronic Ischemic Cardiomyopathy. Stem Cell Rev. Rep. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Nakamura, S.; Li, Q.; Wysoczynski, M.; Gumpert, A.M.; Wu, W.; Hunt, G.; Stowers, H.; Ou, Q.; Bolli, R. Repeated Administrations of Cardiac Progenitor Cells Are Superior to a Single Administration of an Equivalent Cumulative Dose. J. Am. Hear. Assoc. 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokita, Y.; Tang, X.L.; Li, Q.; Wysoczynski, M.; Hong, K.U.; Nakamura, S.; Wu, W.J.; Xie, W.; Li, D.; Hunt, G.; et al. Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy. Circ. Res. 2016, 119, 635–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Guo, Y.; Ou, Q.; Chen, N.; Wu, W.-J.; Yuan, F.; O’Brien, E.; Wang, T.; Luo, L.; Hunt, G.N.; et al. Intracoronary administration of cardiac stem cells in mice: A new, improved technique for cell therapy in murine models. Basic Res. Cardiol. 2011, 106, 849–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysoczynski, M.; Guo, Y.; Moore, J.B.; Muthusamy, S.; Li, Q.; Nasr, M.; Li, H.; Nong, Y.; Wu, W.; Tomlin, A.A.; et al. Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence. J. Am. Coll. Cardiol. 2017, 69, 1824–1838. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990, 81, 1161–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Bolli, R.; Tang, X.-L.; Sanganalmath, S.K.; Rimoldi, O.; Mosna, F.; Abdel-Latif, A.; Jneid, H.; Rota, M.; Leri, A.; Kajstura, J. Intracoronary Delivery of Autologous Cardiac Stem Cells Improves Cardiac Function in a Porcine Model of Chronic Ischemic Cardiomyopathy. Circulation 2013, 128, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, K.U.; Li, Q.-H.; Guo, Y.; Patton, N.S.; Moktar, A.; Bhatnagar, A.; Bolli, R. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res. Cardiol. 2013, 108, 346. [Google Scholar] [CrossRef] [PubMed]
- Keith, M.C.; Bolli, R. “String theory” of c-kit(pos) cardiac cells: A new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 2015, 116, 1216–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanganalmath, S.K.; Bolli, R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 2013, 113, 810–834. [Google Scholar] [CrossRef]
- Tang, X.-L.; Rokosh, G.; Sanganalmath, S.K.; Tokita, Y.; Keith, M.C.L.; Shirk, G.; Stowers, H.; Hunt, G.N.; Wu, W.; Dawn, B.; et al. Effects of Intracoronary Infusion of Escalating Doses of Cardiac Stem Cells in Rats With Acute Myocardial Infarction. Circ. Hear. Fail. 2015, 8, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Bolli, R.; Ghafghazi, S. Stem cells: Cell therapy for cardiac repair: What is needed to move forward? Nat. Rev. Cardiol. 2017, 14, 257–258. [Google Scholar] [CrossRef]
- Guo, Y.; Bao, W.; Wu, W.-J.; Shinmura, K.; Tang, X.-L.; Bolli, R. Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Res. Cardiol. 2000, 95, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n= | Before 1st Rx | Before 2nd Rx | Before 3rd Rx | Final | |
---|---|---|---|---|---|
EDV (µL) | |||||
Vehicle | 18 | 82.6± 1.4 | 86.7 ± 1.4 | 88.8 ± 1.4 | 90.8 ± 1.8 |
Combined dose | 18 | 83.0 ± 1.5 | 83.0 ± 1.7 | 84.7 ± 1.7 | 84.6 ± 1.6 # |
Multiple doses | 16 | 83.4 ± 1.9 | 81.5 ± 1.5 | 81.9 ± 2.2 # | 85.4 ± 1.1 |
ESV (µL) | |||||
Vehicle | 18 | 58.8 ± 1.0 | 62.4 ± 0.8 | 64.2 ± 1.0 | 66.1 ± 1.3 |
Combined dose | 18 | 59.0 ± 1.0 | 55.7 ± 1.3 # | 56.3 ± 1.4 # | 56.2 ± 1.4 # |
Multiple doses | 16 | 59.5 ± 1.4 | 55.2 ± 1.4 # | 54.8 ± 1.7 # | 55.3 ± 0.9 # |
SV(µL) | |||||
Vehicle | 18 | 23.8 ± 0.4 | 24.3 ± 0.4 | 24.6 ± 0.4 | 24.7 ± 0.5 |
Combined dose | 18 | 23.9 ± 0.5 | 27.3 ± 0.7 # | 28.4 ± 0.7 # | 28.0 ± 0.7 # |
Multiple doses | 16 | 23.9 ± 0.6 | 26.3 ± 0.5 # | 27.1 ± 0.6 # | 30.4 ± 0.6 # |
EF (%) | |||||
Vehicle | 18 | 28.8 ± 0.2 | 28.0 ± 0.2 | 27.7 ± 0.2 | 27.3 ± 0.2 |
Combined dose | 18 | 28.9 ± 0.3 | 33.0 ± 0.5 # | 33.7 ± 0.7 # | 33.6 ± 0.8 # |
Multiple doses | 16 | 28.7 ± 0.2 | 32.4 ± 0.7 # | 33.2 ± 0.4 # | 35.2 ± 0.6 # |
n= | After 1st Rx | After 2nd Rx | After 3rd Rx | |
---|---|---|---|---|
Δ EDV (µL) | ||||
Vehicle | 18 | 4.0 ± 1.4 | 2.1± 0.6 | 2.1 ± 1.4 |
Combined dose | 18 | −0.1 ± 1.5 | 1.7 ± 1.7 | −0.2 ± 1.6 |
Multiple doses | 16 | −2.1 ± 1.7 # | 0.6 ± 2.2 | 3.5 ± 2.0 |
Δ ESV (µL) | ||||
Vehicle | 18 | 3.6 ± 1.0 | 1.8 ± 0.4 | 1.9 ± 1.0 |
Combined dose | 18 | −3.3 ± 1.0 # | 0.6 ± 1.4 | −0.1 ± 1.3 |
Multiple doses | 16 | −4.3 ± 1.3 # | −0.4 ± 1.8 | 0.5 ± 1.4 |
Δ SV (µL) | ||||
Vehicle | 18 | 0.5 ± 0.4 | 0.3 ± 0.2 | 0.1 ± 0.4 |
Combined dose | 18 | 3.4 ± 0.6 # | 1.1 ± 0.7 | −0.1 ± 0.5 |
Multiple doses | 16 | 2.4 ± 0.6 # | 0.8 ± 0.8 | 3.0 ± 0.9 †,§ |
Δ EF (%) | ||||
Vehicle | 18 | −0.8 ± 0.2 | −0.3 ± 0.1 | −0.5 ± 0.1 |
Combined dose | 18 | 4.1 ± 0.5 # | 0.7 ± 0.8 | 0.1 ± 0.5 |
Multiple doses | 16 | 3.7 ± 0.6 # | 0.8 ± 0.6 | 2.0 ± 0.5 †,§ |
n= | After 1st Rx | After 2nd Rx | After 3rd Rx | |
---|---|---|---|---|
Δ EDV (µL) | ||||
Vehicle | 18 | 4.0 ± 1.4 | 6.1 ± 1.1 | 8.2 ± 1.1 |
Combined dose | 18 | −0.1 ± 1.5 | 1.8 ± 1.6 | 1.6 ± 1.9 † |
Multiple doses | 16 | −2.1 ± 1.7 # | −1.6 ± 3.0 * | 2.0 ± 2.3 |
Δ ESV (µL) | ||||
Vehicle | 18 | 3.6 ± 1.0 | 5.4 ± 0.8 | 7.3 ± 0.9 |
Combined dose | 18 | −3.3 ± 1.0 # | −2.7 ± 1.1 * | −2.8 ± 1.4 † |
Multiple doses | 16 | −4.3 ± 1.3 # | −4.7 ± 2.2 * | −4.2 ± 1.6 † |
Δ SV (µL) | ||||
Vehicle | 18 | 0.5 ± 0.4 | 0.8 ± 0.4 | 0.9 ± 0.3 |
Combined dose | 18 | 3.4 ± 0.6 # | 4.5 ± 0.9 * | 4.4 ± 1.0 † |
Multiple doses | 16 | 2.4 ± 0.6 | 3.2 ± 0.9 * | 6.2 ± 1.0 † |
Δ EF (%) | ||||
Vehicle | 18 | −0.8 ± 0.2 | −1.1 ± 0.2 | −1.6 ± 0.2 |
Combined dose | 18 | 4.1 ± 0.5 # | 4.8 ± 0.8 * | 4.8 ± 0.8 † |
Multiple doses | 16 | 3.7 ± 0.6 # | 4.5 ± 0.4 * | 6.6 ± 0.6 † |
Vehicle (n = 18) | Combined Dose (n = 18) | Multiple Doses (n = 16) | |
---|---|---|---|
EDV (µL) | 77.3 ± 4.1 | 74.1 ± 3.9 | 73.3 ± 4.0 |
ESV (µL) | 63.7 ± 3.5 | 56.3 ± 2.3 | 54.4 ± 3.2 |
SV (µL) | 20.0 ± 1.5 | 24.5 ± 2.0 | 27.1 ± 1.3 # |
+dP/dt (mmHg/s) | 5003 ± 177 | 5192 ± 239 | 5620 ± 169 |
−dP/dt (mmHg/s) | −4997 ± 209 | −5087 ± 170 | −5427 ± 166 |
EF (%) | 25.7 ± 1.2 | 33.2 ± 1.7 # | 37.4 ± 1.5 # |
Ees (mmHg/µL) | 4.8 ± 0.2 | 6.5 ± 0.5 # | 7.1 ± 0.3 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Guo, Y.; Nong, Y.; Tomlin, A.; Gumpert, A.; Zhu, X.; Hassan, S.A.; Bolli, R. Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 3145. https://doi.org/10.3390/ijms22063145
Li Q, Guo Y, Nong Y, Tomlin A, Gumpert A, Zhu X, Hassan SA, Bolli R. Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy. International Journal of Molecular Sciences. 2021; 22(6):3145. https://doi.org/10.3390/ijms22063145
Chicago/Turabian StyleLi, Qianhong, Yiru Guo, Yibing Nong, Alex Tomlin, Anna Gumpert, Xiaoping Zhu, Syed Adeel Hassan, and Roberto Bolli. 2021. "Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy" International Journal of Molecular Sciences 22, no. 6: 3145. https://doi.org/10.3390/ijms22063145
APA StyleLi, Q., Guo, Y., Nong, Y., Tomlin, A., Gumpert, A., Zhu, X., Hassan, S. A., & Bolli, R. (2021). Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy. International Journal of Molecular Sciences, 22(6), 3145. https://doi.org/10.3390/ijms22063145