Embryonic-Derived Myb− Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis
Abstract
:1. Introduction
2. Results
2.1. Characterization of Embryonic Derived Macrophages (Ed-LPM)
2.2. Efficacy of Ed-LPM in In Vivo Fecal Sepsis
2.2.1. Series 1: Ed-LPM Decreases Severity of Fecal Sepsis
Inflammatory Cells and Cytokines
Bacterial Burden
2.2.2. Series 2: Effect of Ed-LPMs in Meropenem Treated Fecal Sepsis
Inflammatory Cells and Cytokines
Bacterial Burden
2.3. Ex Vivo/In Vitro Experiments
2.3.1. Peritoneal Macrophages
2.3.2. Peritoneal Neutrophils
2.3.3. Meropenem and Ed-LPM Function
3. Discussion
4. Materials and Methods
4.1. Rat Embryonic-Derived Large “Peritoneal-Like” Macrophages (Ed-LPM)
4.2. Rodent Fecal Sepsis Protocol
4.2.1. Cecal Slurry Stock Preparation
4.2.2. Fecal Slurry Sepsis Induction
4.2.3. Experimental Design
4.2.4. Assessment of Septic Injury
4.3. Ex Vivo Analyses
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keane, C.; Jerkic, M.; Laffey, J.G. Stem cell-based therapies for sepsis. Anesthesiology 2017, 127, 1017–1034. [Google Scholar] [CrossRef] [PubMed]
- Kaukonen, K.-M.; Bailey, M.; Suzuki, S.; Pilcher, D.; Bellomo, R. Mortality related to severe sepsis and septic shock among critically ill patients in australia and New Zealand, 2000–2012. JAMA 2014, 311, 1308–1316. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Torio, C.M.; Andrews, R.M. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. 2013. Available online: http://www.ncbi.nlm.nih.gov/books/NBK169005/ (accessed on 31 October 2018).
- Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; Langa, K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010, 304, 1787–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashyna, T.J.; Cooke, C.R.; Wunsch, H.; Kahn, J.M. Population burden of long-term survivorship after severe sepsis in older Americans. J. Am. Geriatr. Soc. 2012, 60, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Liu, V.; Escobar, G.J.; Greene, J.D.; Soule, J.; Whippy, A.; Angus, D.C.; Iwashyna, T.J. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 2014, 312, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.K.; Jensen, A.B.; Nielsen, A.B.; Perner, A.; Moseley, P.L.; Brunak, S. Diagnosis trajectories of prior multi-morbidity predict sepsis mortality. Sci. Rep. 2016, 6, 36624. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Rello, J.; Reinhart, K.; for the EPIC II Group of Investigators; Marshall, J.K.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, C.K.; Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 2016, 17, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Ginhoux, F.; Schultze, J.L.; Murray, P.J.; Ochando, J.; Biswas, S.K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 2015, 17, 34–40. [Google Scholar] [CrossRef]
- Stahl, E.C.; Haschak, M.J.; Popovic, B.; Brown, B.N. Macrophages in the aging liver and age-related liver disease. Front. Immunol. 2018, 9, 2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieu, Y.K.; Reddy, E.P. Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc. Natl. Acad. Sci. USA 2009, 106, 21689–21694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, C.; Perdiguero, E.G.; Frampton, J.; Liu, K.J.; Geissmann, F.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosn, E.E.B.; Cassado, A.A.; Govoni, G.R.; Fukuhara, T.; Yang, Y.; Monack, D.M.; Bortoluci, K.R.; Almeida, S.R.; Herzenberg, L.A. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl. Acad. Sci. USA 2010, 107, 2568–2573. [Google Scholar] [CrossRef] [Green Version]
- Perdiguero, E.G.; Geissmann, F. Myb-independent macrophages: A family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb. Symp. Quant. Biol. 2013, 78, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvack, M.L.; Wigle, T.J.; Lee, J.; Wang, J.; Ackerley, C.; Grunebaum, E.; Post, M. Alveolar-like stem cell-derived Myb(−) macrophages promote recovery and survival in airway disease. Am. J. Respir. Crit. Care Med. 2016, 193, 1219–1229. [Google Scholar] [CrossRef]
- Buchrieser, J.; James, W.; Moore, M.D. Human induced pluripotent stem cell-derived macrophages share ontogeny with Myb -independent tissue-resident macrophages. Stem Cell Rep. 2017, 8, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Cassado, A.D.A.; Lima, M.R.D.; Bortoluci, K.R. Revisiting mouse peritoneal macrophages: Heterogeneity, development, and function. Front. Immunol. 2015, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Leendertse, M.; Willems, R.J.L.; Giebelen, I.A.J.; Roelofs, J.J.T.H.; Van Rooijen, N.; Bonten, M.J.M.; Van Der Poll, T. Peritoneal macrophages are important for the early containment of Enterococcus faecium peritonitis in mice. Innate Immun. 2009, 15, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Perdiguero, E.G.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; De Bruijn, M.F.; Geissmann, F.; et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nat. Cell Biol. 2015, 518, 547–551. [Google Scholar] [CrossRef]
- Hashimoto, D.; Chow, A.; Noizat, C.; Teo, P.; Beasley, M.B.; Leboeuf, M.; Becker, C.D.; See, P.; Price, J.; Lucas, D.; et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38, 792–804. [Google Scholar] [CrossRef] [Green Version]
- Dos Anjos Cassado, A.; de Albuquerque, J.A.T.; Sardinha, L.R.; de Lima Buzzo, C.; Faustino, L.; Nascimento, R.; Bou Ghosn, E.E.; D'Império Lima, M.R.; Mosig Alvarez, J.M.; Ramalho Bortoluci, R. Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli. PLoS ONE 2011, 6, e22141. [Google Scholar]
- Guth, A.M.; Janssen, W.J.; Bosio, C.M.; Crouch, E.C.; Henson, P.M.; Dow, S.W. Lung environment determines unique phenotype of alveolar macrophages. Am. J. Physiol. Cell. Mol. Physiol. 2009, 296, L936–L946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-Y.; Ding, X.-F.; Liang, H.-Y.; Zhang, X.-J.; Liu, S.-H.; Han, B.-; Duan, X.-G.; Sun, T.-W. Efficacy of mesenchymal stem cell therapy for sepsis: A meta-analysis of preclinical studies. Stem Cell Res. Ther. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, C.A.J.J.; Kieft, H.; Speelberg, B.; Buiting, A.; Kooij, M.V.M.; Ruys, G.J.H.M.; Vincent, H.H.; Vermeulen, M.C.A.; Olink, A.G.; Hoepelman, I.M. Meropenem versus cefuroxime plus gentamicin for treatment of serious infections in elderly patients. Antimicrob. Agents Chemother. 1998, 42, 1233–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verwaest, C.G.; Belgian Multicenter Study. Meropenem versus imipenem/cilastatin as empirical monotherapy for serious bacterial infections in the intensive care unit. Clin. Microbiol. Infect. 2000, 6, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Jerkic, M.; Gagnon, S.; Rabani, R.; Ward-Able, T.; Masterson, C.; Otulakowski, G.; Curley, G.F.; Marshall, J.; Kavanagh, B.P.; Laffey, J.G. Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis in part by enhancing peritoneal macrophage bacterial killing via heme oxygenase-1 induction in rats. Anesthesiology 2020, 132, 140–154. [Google Scholar] [CrossRef]
- Rinaldi, S.; Landucci, F.; De Gaudio, A.R. Antioxidant therapy in critically septic patients. Curr. Drug Targets 2009, 10, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Chami, B.; Martin, N.J.; Dennis, J.M.; Witting, P.K. Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch. Biochem. Biophys. 2018, 645, 61–71. [Google Scholar] [CrossRef]
- Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef]
- Fadok, V.A.; Bratton, D.L.; Konowal, A.; Freed, P.W.; Westcott, J.Y.; Henson, P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 1998, 101, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Voll, R.E.; Herrmann, M.; Roth, E.A.; Stach, C.; Kalden, J.R.; Girkontaite, I. Immunosuppressive effects of apoptotic cells. Nature 1997, 390, 350–351. [Google Scholar] [CrossRef]
- Marks, H.; Kalkan, T.; Stunnenberg, H.G.; Menafra, R.; Denissov, S.; Jones, K.; Hofemeister, H.; Nichols, J.; Kranz, A.; Stewart, A.F.; et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 2012, 149, 590–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starr, M.E.; Steele, A.M.; Saito, M.; Hacker, B.J.; Evers, B.M.; Saito, H. A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis. PLoS ONE 2014, 9, e115705. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.; Higgins, B.; Contreras, M.; Ni Chonghaile, M.; Hassett, P.; O’toole, D.; Laffey, J.G. Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Crit. Care Med. 2009, 37, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Higgins, B.D.; Costello, J.; Contreras, M.; Hassett, P.; Toole, D.O.; Laffey, J.G. Differential effects of buffered hypercapnia versus hypercapnic acidosis on shock and lung injury induced by systemic sepsis. Anesthesiology 2009, 111, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, A.D.; O’Cronin, D.F.; Howell, K.; Naughton, F.; OʼBrien, S.; Boylan, J.; OʼConnor, C.; OʼToole, D.; Laffey, J.G.; McLoughlin, P. Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis. Crit. Care Med. 2009, 37, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- O’Croinin, D.F.; Nichol, A.D.; Hopkins, N.; Boylan, J.; O’Brien, S.; O’Connor, C.; Laffey, J.G.; McLoughlin, P. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit. Care Med. 2008, 36, 2128–2135. [Google Scholar] [CrossRef]
- Rabani, R.; Volchuk, A.; Jerkic, M.; Ormesher, L.; Garces-Ramirez, L.; Canton, J.; Masterson, C.; Gagnon, S.; Tatham, K.C.; Marshall, J.; et al. Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. Eur. Respir. J. 2018, 51, 1702021. [Google Scholar] [CrossRef]
- Canton, J.; Khezri, R.; Glogauer, M.; Grinstein, S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell 2014, 25, 3330–3341. [Google Scholar] [CrossRef]
- Curley, G.F.; Jerkic, M.; Dixon, S.; Hogan, G.; Masterson, C.; O’Toole, D.; Devaney, J.; Laffey, J.G. Cryopreserved, xeno-free human umbilical cord mesenchymal stromal cells reduce lung injury severity and bacterial burden in rodent escherichia coli-;induced acute respiratory distress syndrome. Crit. Care Med. 2017, 45, e202–e212. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerkic, M.; Litvack, M.L.; Gagnon, S.; Otulakowski, G.; Zhang, H.; Rotstein, O.; Kavanagh, B.P.; Post, M.; Laffey, J.G. Embryonic-Derived Myb− Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. Int. J. Mol. Sci. 2021, 22, 3190. https://doi.org/10.3390/ijms22063190
Jerkic M, Litvack ML, Gagnon S, Otulakowski G, Zhang H, Rotstein O, Kavanagh BP, Post M, Laffey JG. Embryonic-Derived Myb− Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. International Journal of Molecular Sciences. 2021; 22(6):3190. https://doi.org/10.3390/ijms22063190
Chicago/Turabian StyleJerkic, Mirjana, Michael L. Litvack, Stéphane Gagnon, Gail Otulakowski, Haibo Zhang, Ori Rotstein, Brian P. Kavanagh, Martin Post, and John G. Laffey. 2021. "Embryonic-Derived Myb− Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis" International Journal of Molecular Sciences 22, no. 6: 3190. https://doi.org/10.3390/ijms22063190
APA StyleJerkic, M., Litvack, M. L., Gagnon, S., Otulakowski, G., Zhang, H., Rotstein, O., Kavanagh, B. P., Post, M., & Laffey, J. G. (2021). Embryonic-Derived Myb− Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. International Journal of Molecular Sciences, 22(6), 3190. https://doi.org/10.3390/ijms22063190