Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Summary of Studies
2.2. P2Y13-Mediated Signaling Events
2.3. P2Y13-Mediated Functional Events
2.4. ATP-Mediated P2Y13 Signaling
2.5. P2Y13-Mediated Effects in Different Tissues
2.6. Species Origin of the P2Y13 Receptor
3. Discussion
4. Materials and Methods
4.1. Software
4.2. Summary of Studies
4.3. Data Extraction
4.4. Study Level Outcomes
4.5. Scaling and Normalization of Data
4.6. Fitting Dose-Dependency Curves in Hill Function
4.7. Preparing Data for Meta-Analysis
4.8. Meta-Analysis
4.9. Subgroup Analysis
4.10. Heterogeneity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burnstock, G. Purinergic nerves. Pharmacol. Rev. 1972, 24, 509–581. [Google Scholar] [PubMed]
- Burnstock, G. Purine and pyrimidine receptors. Cell Mol. Life Sci. 2007, 64, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Introduction to Purinergic Signalling in the Brain. Adv. Exp. Med. Biol. 2020, 1202, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A.; Delicado, E.G.; Gachet, C.; Kennedy, C.; von Kügelgen, I.; Li, B.; Miras-Portugal, M.T.; Novak, I.; Schöneberg, T.; Perez-Sen, R.; et al. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br. J. Pharmacol. 2020, 177, 2413–2433. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.J.; Prosser, D.M.; Agans, J.M.; Zhai, Y.; Smith, M.D.; Lachowicz, J.E.; Zhang, F.L.; Gustafson, E.; Monsma, F.J., Jr.; Wiekowski, M.T.; et al. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J. Clin. Investig. 2001, 107, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Hechler, B.; Gachet, C. P2 receptors and platelet function. Purinergic Signal. 2011, 7, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Maurel-Ribes, A.; Nauze, M.; N’Guyen, D.; Martinez, L.O.; Payrastre, B.; Sénard, J.M.; Galés, C.; Pons, V. Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y(12) receptor. Cell Mol. Life Sci. 2019, 76, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Sugidachi, A.; Ogawa, T.; Isobe, T.; Jakubowski, J.A.; Asai, F. Stereoselective inhibition of human platelet aggregation by R-138727, the active metabolite of CS-747 (prasugrel, LY640315), a novel P2Y12 receptor inhibitor. Thromb. Haemost. 2005, 94, 593–598. [Google Scholar] [CrossRef]
- Savi, P.; Labouret, C.; Delesque, N.; Guette, F.; Lupker, J.; Herbert, J.M. P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem. Biophys. Res. Commun. 2001, 283, 379–383. [Google Scholar] [CrossRef]
- Jacquet, S.; Malaval, C.; Martinez, L.O.; Sak, K.; Rolland, C.; Perez, C.; Nauze, M.; Champagne, E.; Terce, F.; Gachet, C.; et al. The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis. Cell Mol. Life Sci. 2005, 62, 2508–2515. [Google Scholar] [CrossRef] [PubMed]
- Bjorquist, A.; Di Buduo, C.A.; Femia, E.A.; Storey, R.F.; Becker, R.C.; Balduini, A.; Nylander, S.; Cattaneo, M. Studies of the interaction of ticagrelor with the P2Y13 receptor and with P2Y13-dependent pro-platelet formation by human megakaryocytes. Thromb. Haemost. 2016, 116, 1079–1088. [Google Scholar] [CrossRef]
- Perez-Sen, R.; Gomez-Villafuertes, R.; Ortega, F.; Gualix, J.; Delicado, E.G.; Miras-Portugal, M.T. An Update on P2Y13 Receptor Signalling and Function. Adv. Exp. Med. Biol. 2017, 1051, 139–168. [Google Scholar]
- Communi, D.; Gonzalez, N.S.; Detheux, M.; Brezillon, S.; Lannoy, V.; Parmentier, M.; Boeynaems, J.M. Identification of a novel human ADP receptor coupled to G(i). J. Biol. Chem. 2001, 276, 41479–41485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumagalli, M.; Trincavelli, L.; Lecca, D.; Martini, C.; Ciana, P.; Abbracchio, M.P. Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem. Pharmacol. 2004, 68, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.L.; Luo, L.; Gustafson, E.; Palmer, K.; Qiao, X.; Fan, X.; Yang, S.; Laz, T.M.; Bayne, M.; Monsma, F., Jr. P2Y(13): Identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse. J. Pharmacol. Exp. Ther. 2002, 301, 705–713. [Google Scholar] [CrossRef]
- Chhatriwala, M.; Ravi, R.G.; Patel, R.I.; Boyer, J.L.; Jacobson, K.A.; Harden, T.K. Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J. Pharmacol. Exp. Ther. 2004, 311, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- Espada, S.; Ortega, F.; Molina-Jijon, E.; Rojo, A.I.; Perez-Sen, R.; Pedraza-Chaverri, J.; Miras-Portugal, M.T.; Cuadrado, A. The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic. Biol. Med. 2010, 49, 416–426. [Google Scholar] [CrossRef]
- Guarracino, J.F.; Cinalli, A.R.; Fernandez, V.; Roquel, L.I.; Losavio, A.S. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 2016, 326, 31–44. [Google Scholar] [CrossRef]
- del Puerto, A.; Diaz-Hernandez, J.I.; Tapia, M.; Gomez-Villafuertes, R.; Benitez, M.J.; Zhang, J.; Miras-Portugal, M.T.; Wandosell, F.; Diaz-Hernandez, M.; Garrido, J.J. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J. Cell Sci. 2012, 125, 176–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Robaye, B.; Agrawal, A.; Skerry, T.M.; Boeynaems, J.M.; Gartland, A. Reduced bone turnover in mice lacking the P2Y13 receptor of ADP. Mol. Endocrinol. 2012, 26, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yan, Y.; He, H.; Wang, L.; Zhang, N.; Zhang, J.; Huang, H.; Wu, N.; Ren, H.; Qian, M.; et al. IFN-stimulated P2Y13 protects mice from viral infection by suppressing the cAMP/EPAC1 signaling pathway. J. Mol. Cell Biol. 2019, 11, 395–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintas, C.; Vale, N.; Goncalves, J.; Queiroz, G. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors. Front. Pharmacol. 2018, 9, 418. [Google Scholar] [CrossRef]
- Jacques, F.J.; Silva, T.M.; da Silva, F.E.; Ornelas, I.M.; Ventura, A.L.M. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture. Cell. Signal. 2017, 35, 95–106. [Google Scholar] [CrossRef]
- Ortega, F.; Perez-Sen, R.; Delicado, E.G.; Teresa Miras-Portugal, M. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 2011, 61, 1210–1221. [Google Scholar] [CrossRef]
- Gao, Z.G.; Ding, Y.; Jacobson, K.A. P2Y(13) receptor is responsible for ADP-mediated degranulation in RBL-2H3 rat mast cells. Pharmacol. Res. 2010, 62, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Olivecrona, G.; Gotberg, M.; Olsson, M.L.; Winzell, M.S.; Erlinge, D. ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ. Res. 2005, 96, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.C.; Lee, J.S.; Sak, K.; Marteau, F.; Mamedova, L.; Boeynaems, J.M.; Jacobson, K.A. Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochem. Pharmacol. 2005, 70, 266–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasquero, L.M.; Delicado, E.G.; Jiménez, A.I.; Pérez-Sen, R.; Miras-Portugal, M.T. Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y(13)-like receptors. Purinergic. Signal. 2005, 1, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirkner, K.; Schweigel, J.; Gerevich, Z.; Franke, H.; Allgaier, C.; Barsoumian, E.L.; Draheim, H.; Illes, P. Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br. J. Pharmacol. 2004, 141, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Marteau, F.; Le Poul, E.; Communi, D.; Communi, D.; Labouret, C.; Savi, P.; Boeynaems, J.M.; Gonzalez, N.S. Pharmacological characterization of the human P2Y13 receptor. Mol. Pharmacol. 2003, 64, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Mikolajewicz, N.; Komarova, S.V. Meta-Analytic Methodology for Basic Research: A Practical Guide. Front. Physiol. 2019, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T.P. Chapter 2—Drug Affinity and Efficacy. In Pharmacology in Drug Discovery and Development, 2nd ed.; Kenakin, T.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 21–41. [Google Scholar] [CrossRef]
- Mikolajewicz, N.; Sehayek, S.; Wiseman, P.W.; Komarova, S.V. Transmission of Mechanical Information by Purinergic Signaling. Biophys. J. 2019, 116, 2009–2022. [Google Scholar] [CrossRef]
- Milior, G.; Morin-Brureau, M.; Chali, F.; Le Duigou, C.; Savary, E.; Huberfeld, G.; Rouach, N.; Pallud, J.; Capelle, L.; Navarro, V.; et al. Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue. J. Neurosci. 2020, 40, 1373–1388. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, E.; Yamanaka, H.; Kobayashi, K.; Yagi, H.; Sakagami, M.; Noguchi, K. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 2015, 63, 216–228. [Google Scholar] [CrossRef]
- von Kugelgen, I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol. Ther. 2006, 110, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Storey, R.F.; Husted, S.; Harrington, R.A.; Heptinstall, S.; Wilcox, R.G.; Peters, G.; Wickens, M.; Emanuelsson, H.; Gurbel, P.; Grande, P.; et al. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 2007, 50, 1852–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Giezen, J.J.; Humphries, R.G. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin. Thromb. Hemost. 2005, 31, 195–204. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year | Physiological System | Species | Agonist | Outcome(s) | P2Y13 Expression | Quality Score |
---|---|---|---|---|---|---|
Zhang et al., 2019 [21] | Immune | Mouse | ADP | Viral RNA replication, Cell viability | Endogenous | 13 |
Quintas et al., 2018 [22] | Nervous | Rat | ADPβS | Cell proliferation | Endogenous | 12 |
Jacques et al., 2017 [23] | Sensory | Chick embryo | ADP | p-CREB | Endogenous | 13 |
Guarracino et al., 2016 [18] | Musculoskeletal | Mouse | 2MeSADP, ADP, ATP | MEPP frequency | Endogenous | 14 |
Björquist et al., 2016 [11] | Model system | Human | 2MeSADP | Dynamic Mass Redistribution | Heterologous | 13 |
Ortega et al., 2011 [24] | Nervous | Rat | 2MeSADP | p-ERK | Endogenous | 12 |
Gao et al., 2010 [25] | Immune | Rat | ADP | Hex release | Endogenous | 14 |
Espada et al., 2010 [17] | Nervous Model system | Mouse | ADP 2MeSADP | Hmox1 induction | Endogenous Heterologous | 14 |
Wang et al., 2005 [26] | Circulatory | Human | 2MeSADP | ATP release, cAMP accumulation | Endogenous | 14 |
Kim et al., 2005 [27] | Model system | Human | ADP | IP3 accumulation | Heterologous | 12 |
Jacquet et al., 2005 [10] | Model system | Human | ADP | cAMP accumulation | Heterologous | 14 |
Carrasquero et al., 2005 [28] | Nervous | Rat | 2MeSADP, ADP | cAMP accumulation | Endogenous | 14 |
Wirkner et al., 2004 [29] | Renal | Human | ADP, ADPβS, ATP | Inhibition of N-type calcium channels | Endogenous | 12 |
Fumagalli et al., 2004 [14] | Model system | Rat | 2MeSADP, ADP | [35S]GTPγS binding | Heterologous | 14 |
Chhatriwala et al., 2004 [16] | Model system | Human | 2MesADP | IP3 accumulation | Heterologous | 14 |
Marteau et al., 2003 [30] | Model system | Human | 2MeSADP, ADP, ADPβS, ATP, 2MeSATP | [35S]GTPγS binding, IP3 accumulation | Heterologous | 14 |
Zhang et al., 2002 [15] | Model system | Human | 2MeSADP, ADP, ADPβS, 2MeSATP | Intracellular calcium, cAMP accumulation | Heterologous | 14 |
Communi et al., 2001 [13] | Model system | Human | 2MeSADP, ADP, ADPβS, ATP, 2MeSATP | IP3 accumulation, cAMP accumulation | Heterologous | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dsouza, C.; Komarova, S.V. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 3468. https://doi.org/10.3390/ijms22073468
Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. International Journal of Molecular Sciences. 2021; 22(7):3468. https://doi.org/10.3390/ijms22073468
Chicago/Turabian StyleDsouza, Chrisanne, and Svetlana V Komarova. 2021. "Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis" International Journal of Molecular Sciences 22, no. 7: 3468. https://doi.org/10.3390/ijms22073468
APA StyleDsouza, C., & Komarova, S. V. (2021). Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. International Journal of Molecular Sciences, 22(7), 3468. https://doi.org/10.3390/ijms22073468