DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases
Abstract
:1. Introduction
2. Contribution of DNA Methylation to Human AGT Gene Transcription
3. Effect of Salt Intake on Methylation Status of the AGT Gene in the Heart
4. Epigenetic Modification of AGT Gene in Aldosterone-Producing Adenoma
5. Contribution of DNA Methylation to Human CYP11B2 Transcription
6. Epigenetic Regulation of CYP11B2 by Angiotensin II and Salt Intake
7. Epigenetic Modification of CYP11B2 in Aldosterone-Producing Adenoma
8. Gene Expression and CpG Methylation of CYP11B2 in Tissues from Cardiomyopathy
9. Epigenesis of Angiotensin Converting Enzyme Gene
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin converting enzyme |
Ad | cis-acting element |
AGT | angiotensinogen |
AMP | adenylic acid |
Ang II | angiotensin II; |
ARB | AT1R blocker; |
APA | aldosterone-producing adenoma |
APCC | aldosterone-producing cell cluster |
ATF | activating transcription factor |
AT1R | type2 angiotensin II receptor |
BP | blood pressure |
CACNA1D | Calcium Voltage-Gated Channel Subunit Alpha1 D |
CEBP | CCAAT enhancer binding protein |
CREB | cyclic AMP responsive element binding protein |
CYP11B2 | aldosterone synthase |
Epl | eprelenone |
ESR | estrogen receptor |
GR | glucocorticoid receptor |
GRE | GR element |
HCM | hypertrophic cardiomyopathy |
HF | heart failure |
HNF1A | hepatocyte nuclear factor1 homeobox A |
HPA | hypothalamic-pituitary-adrenal |
IL 6 | interleukin 6 |
JPAS | Japan primary aldosteronism study |
KCNJ | potassium inwardly rectifying channel J subfamily J |
MBD | methyl-CpG-binding domain |
MECP | methyl-CpG-binding protein |
Mi2 | chromodomain-helicase-DNA-binding protein Mi-2 homolog |
MR | mineralocorticoid receptor |
MRA | mineralocorticoid receptor antagonist |
NGFI-B | nerve growth factor-induced clone B |
NBRE-1 | NGFI-B response element |
NFA | non-functioning adenoma |
NR4A | nuclear receptor 4 group A |
NS | normal salt |
NURR1 | nuclear receptor-related factor 1 |
PA | primary aldosteronism |
RAAS | renin-angiotensin-aldosterone system |
rEF | reduced left-ventricular ejection fraction |
ReR | renin receptor |
SETDB | histone-lysine N-methyltransferase |
Sin3A | SIN3 transcription regulator family member A |
SSH | salt-sensitive hypertension |
STAT | signal transducer and activation transcription factor |
TNF | tumor necrosis factor |
TSS | transcription start site |
USF | upstream stimulatory factor |
References
- Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azushima, K.; Morisawa, N.; Tamura, K.; Nishiyama, A. Recent research advances in renin-angiotensin-aldosterone system receptors. Curr. Hypertens. Rep. 2020, 22. [Google Scholar] [CrossRef]
- Ames, M.K.; Atkins, C.E.; Pitt, B.J. The renin-angiotensin-aldosterone system and its suppression. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [Green Version]
- Briet, M.; Barhoumi, T.; Oneeb, M.; Mian, R.; Coelho, S.C.; Ouerd, S.; Rautureau, Y.; Coffman, T.M.; Paradis, P.; Schiffrin, E.L. Aldosterone-induced vascular remodeling and endothelial dysfunction require functional angiotensin type 1a receptors. Hypertension 2016, 67, 897–905. [Google Scholar] [CrossRef]
- Ferrario, C.M.; Mullick, A.E. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol. Res. 2017, 125, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Stoll, D.; Yokota, R.; Sanches Aragão, D.; Casarini, D.E. Both aldosterone and spironolactone can modulate the intracellular ACE/ANG II/AT1 and ACE2/ANG (1-7)/MAS receptor axes in human mesangial cells. Physiol. Rep. 2019, 11, e14105. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.J.; Arnold, A.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2019, 29, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Mochel, J.P.; Teng, C.H.; Peyrou, M.; Giraudel, J.; Danhof, M.; Rigel, D.F. Sacubitril/valsartan (LCZ696) significantly reduces aldosterone and increases cGMP circulating levels in a canine model of RAAS activation. Eur. J. Pharm. Sci. 2019, 128, 103–111. [Google Scholar] [CrossRef]
- Inui, Y.; Mochida, H.; Yamairi, F.; Okada, M.; Ishida, J.; Fukamizu, A.; Arakawa, K. Effects of aging and uninephrectomy on renal changes in Tsukuba hypertensive mice. Biomed. Rep. 2013, 1, 359–364. [Google Scholar] [CrossRef]
- Zhu, A.; Yoneda, T.; Demura, M.; Karashima, S.; Usukura, M.; Yamagishi, M.; Takeda, Y. Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats. J. Hypertens. 2009, 27, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Massiera, F.; Bloch-Faure, M.; Ceiler, D.; Murakami, K.; Fukamizu, A.; Gasc, J.M.; Quignard-Boulange, A.; Negrel, R.; Ailhaud, G.; Seydoux, J.; et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001, 15, 2727–2729. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Massiera, F.; Quignard-Boulange, A.; Ailhaud, G.; Voy, B.H.; Wasserman, D.H.; Moustaid-Moussa, N. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose Intolerance, and insulin resistance. Obesity 2012, 20, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Yasue, S.; Masuzaki, H.; Okada, S.; Ishii, T.; Kozuka, C.; Tanaka, T.; Fujikura, J.; Ebihara, K.; Hosoda, K.; Katsurada, A.; et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: Impact of nutritional status and adipocyte hypertrophy. Am. J. Hypertens. 2010, 23, 425–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davel, A.P.; Jaffe, I.Z.; Tostes, R.C.; Jaisser, F.; Chantemèle, E.J.B. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: Translational and sex-specific effects. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H989–H999. [Google Scholar] [CrossRef]
- Takeda, Y.; Yoneda, T.; Demura, M.; Usukura, M.; Mabuchi, H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation 2002, 105, 677–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Mesa, J.S.; White, A.; Ahmadian-Tehrani, A.; Anderson, A.S. Mineralocorticoid receptor antagonists: A comprehensive review of finerenone. Curr. Cardiol. Rep. 2020, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Capelli, I.; Gasperoni, L.; Ruggeri, M.; Donati, G.; Baraldi, O.; Sorrenti, G.; Caletti, M.T.; Aiello, V.; Cianciolo, G.; La Manna, G. New mineralocorticoid receptor antagonists: Update on their use in chronic kidney disease and heart failure. J. Nephrol. 2020, 33, 37–48. [Google Scholar] [CrossRef]
- Ohno, Y.; Sone, M.; Inagaki, N.; Yamasaki, T.; Ogawa, O.; Takeda, Y.; Kurihara, I.; Itoh, H.; Umakoshi, H.; Tsuiki, M.; et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: A multicenter study in Japan. Hypertension 2018, 71, 530–537. [Google Scholar] [CrossRef]
- Zennaro, M.C.; Boulkroun, S.; Fernandes-Rosa, F.L. Pathogenesis and treatment of primary aldosteronism. Nat. Rev. Endocrinol. 2020, 16, 578–589. [Google Scholar] [CrossRef]
- Vaidya, A.; Carey, R.M. Evolution of the primary aldosteronism syndrome: Updating the approach. J. Clin. Endocrinol. Metab. 2020, 105, 3771–3783. [Google Scholar] [CrossRef]
- Yang, Y.; Reincke, M.; Williams, T.A. Prevalence, diagnosis and outcomes of treatment for primary aldosteronism. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101365. [Google Scholar] [CrossRef]
- Pillai, P.R.; Griffith, M.; Schwarcz, M.D.; Weiss, I.A. Primary aldosteronism: Cardiovascular risk, diagnosis, and management. Cardiol. Rev. 2020, 28, 84–91. [Google Scholar] [CrossRef]
- Morimoto, S.; Ichihara, A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens. Res. 2020, 43, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Bärfacker, L. 30 Years of the mineralocorticoid receptor: Mineralocorticoid receptor antagonists: 60 years of research and development. J. Endocrinol. 2017, 234, T125–T140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjeldsen, S.E.; von Lueder, T.G.; Smiseth, O.A.; Wachtell, K.; Mistry, N.; Westheim, A.S.; Hopper, I.; Julius, S.; Pitt, B.; Reid, C.M.; et al. Medical therapies for heart failure with preserved ejection fraction. Hypertension 2020, 75, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Garg, S.; Matulevicius, S.A.; Shah, A.M.; Garg, J.; Drazner, M.H.; Amin, A.; Berry, J.D.; Marwick, T.H.; Marso, S.P.; et al. Effect of mineralocorticoid receptor antagonists on cardiac structure and function in patients with diastolic dysfunction and heart failure with preserved ejection fraction: A meta-analysis and systematic review. J. Am. Heart Assoc. 2015, 4, e002137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragasevic, N.; Jakovljevic, V.; Zivkovic, V.; Draginic, N.; Andjic, M.; Bolevich, S.; Jovic, S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can. J. Physiol. Pharmacol. 2021, 99, 18–29. [Google Scholar] [CrossRef]
- Pradhan, A.; Vohra, S.; Sethi, R. Eplerenone: The multifaceted drug in cardiovascular pharmacology. J. Pharm. Bioallied. Sci. 2020, 12, 381–390. [Google Scholar] [CrossRef]
- Takeda, Y.; Zhu, A.; Yoneda, T.; Usukura, M.; Takata, H.; Yamagishi, M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 2007, 10, 1119–1124. [Google Scholar] [CrossRef]
- Rocha, R.; Rudolph, A.E.; Frierdich, G.E.; Nachowiak, D.A.; Kekec, B.K.; Blomme, E.A.; McMahon, E.G.; Delyani, J.A. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1802–H1810. [Google Scholar] [CrossRef]
- Salameh, Y.; Bejaoui, Y.; El Hajj, N. DNA methylation biomarkers in aging and age-related diseases. Front. Genet. 2020, 11, 171. [Google Scholar] [CrossRef]
- Köhler, F.; Rodríguez-Paredes, M. DNA methylation in epidermal differentiation, aging, and cancer. J. Investig. Dermatol. 2020, 140, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, M. Epigenetic mechanisms and hypertension. Hypertension 2018, 72, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Demura, M.; Demura, Y.; Takeda, Y.; Saijoh, K. Dynamic regulation of the angiotensinogen gene by DNA methylation, which is influenced by various stimuli experienced in daily life. Hypertens. Res. 2015, 38, 519–527. [Google Scholar] [CrossRef]
- Parry, A.; Rulands, S.; Reik, W. Active turnover of DNA methylation during cell fate decisions. Nat. Rev. Genet. 2021, 22, 59–66. [Google Scholar] [CrossRef]
- Wang, F.; Demura, M.; Cheng, Y.; Zhu, A.; Karashima, S.; Yoneda, T.; Demura, Y.; Maeda, Y.; Namiki, M.; Ono, K.; et al. Dynamic CCAAT/enhancer binding protein-associated changes of DNA methylation in the angiotensinogen gene. Hypertension 2014, 63, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, J.L.; de Chantemèle, E.J.B. Female sex, a major risk factor for salt-sensitive hypertension. Curr. Hypertens. Rep. 2020, 22, 99. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Jones, D.W.; Butler, J. Salt, no salt, or less salt for patients with heart failure? Am. J. Med. 2020, 133, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Marklund, M.; Henry, M.E.; Appel, L.J.; Croft, K.D.; Neal, B.; Wu, J.H. A systematic review of the sources of dietary salt around the world. Adv. Nutr. 2020, 11, 677–686. [Google Scholar] [CrossRef]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [Green Version]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium intake and hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Kobori, H. Independent regulation of renin–angiotensin–aldosterone system in the kidney. Clin. Exp. Nephrol. 2018, 22, 1231–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, J.L.; Harwood, D.; Bender, L.; Shrestha, L.; Brands, M.W.; Morwitzer, J.; Kennard, S.; Antonova, G.; Chantemèle, E.J.B. Lack of suppression of aldosterone production leads to salt sensitive hypertension in female but not male Balb/C mice. Hypertension 2018, 72, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Ma, Z.; Wang, J.; Zhu, T.; Du, N.; Shatara, A.; Yi, X.; Kowala, M.C.; Du, Y. Salt-dependent blood pressure in human aldosterone synthase-transgenic mice. Sci. Rep. 2017, 7, 492. [Google Scholar] [CrossRef] [Green Version]
- Pellieux, C.; Montessuit, C.; Papageorgiou, I.; Pedrazzini, T.; Lerch, R. Differential effects of high-fat diet on myocardial lipid metabolism in failing and nonfailing hearts with angiotensin II-mediated cardiac remodeling in mice. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1795–H1805. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, A.; Takeda, Y.; Karashima, S.; Kometani, M.; Aono, D.; Higashikata, T.; Konishi, S.; Yoneda, T.; Takeda, Y. Impact of mineralocorticoid receptor blockade with direct renin inhibition in angiotensin II-dependent hypertensive mice. Hypertens. Res. 2020, 43, 1099–1104. [Google Scholar] [CrossRef]
- Wang, T.; Lian, G.; Cai, X.; Lin, Z.; Xie, L. Effect of prehypertensive losartan therapy on AT1R and ATRAP methylation of adipose tissue in the later life of high-fat-fed spontaneously hypertensive rats. Mol. Med. Rep. 2018, 17, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Dasgupta, C.; Chen, M.; Zhang, K.; Buchholz, J.; Xu, Z.; Zang, L. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc. Res. 2014, 101, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, A.; Mulatero, P.; Baudrand, R.; Adler, G.K. The expanding spectrum of primary aldosteronism: Implications for diagnosis, pathogenesis, and treatment. Endocr. Rev. 2018, 39, 1057–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanslik, G.; Wallaschofski, H.; Dietz, A.; Riester, A.; Reincke, M.; Allolio, B.; Lang, K.; Quack, I.; Rump, L.C.; Willenberg, H.S.; et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur. J. Endocrinol. 2015, 173, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Akehi, Y.; Yanase, T.; Motonaga, R.; Umakoshi, H.; Tsuiki, M.; Takeda, Y.; Yoneda, T.; Kurihara, I.; Itoh, H.; Katabami, T.; et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated withsubclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: A large, multicenter cohort study in Japan. Diabetes Care. 2019, 42, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Zhang, H.; Zhang, J.; Zhang, H.; Zeng, Y.; Fang, S.; Li, P.; Zhang, Y.; Lin, X.; Wang, L.; et al. Increased oxidative stress, inflammation and fibrosis in perirenal adipose tissue of patients with aldosterone-producing adenoma. Adipocyte 2019, 8, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Takeda, Y.; Miyamori, I.; Yoneda, T.; Hatakeyama, H.; Inaba, S.; Furukawa, K.; Mabuchi, H.; Takeda, R. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J. Clin. Endocrinol. Metab. 1996, 81, 2797–2800. [Google Scholar]
- Guagliardo, N.A.; Klein, P.M.; Gancayco, C.A.; Lu, A.; Leng, S.; Makarem, R.R.; Cho, C.; Rusin, C.G.; Breault, D.T.; Barrett, P.Q.; et al. Angiotensin II induces coordinated calcium bursts in aldosterone-producing adrenal rosettes. Nat. Commun. 2020, 11, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, Y.; Dohi, K.; Okamoto, R.; Katayama, K.; Ito, M. Novel molecular mechanisms in the inhibition of adrenal aldosterone synthesis: Action of tolvaptan via vasopressin V2 receptor-independent pathway. Br. J. Pharmacol. 2019, 176, 1315–1327. [Google Scholar] [CrossRef]
- Vanderriele, P.E.; Caroccia, B.; Seccia, T.M.; Piazza, M.; Lenzini, L.; Torresan, F.; Iacobone, M.; Unger, T.; Rossi, G.P. The angiotensin type 2 receptor in the human adrenocortical zona glomerulosa and in aldosterone-producing adenoma: Low expression and no functional role. Clin. Sci. 2018, 132, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Hardege, I.; Long, L.; Al Maskari, R.; Figg, N.; O’Shaughnessy, K.M. Targeted disruption of the Kcnj5 gene in the female mouse lowers aldosterone levels. Clin. Sci. 2018, 132, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.; Teubner, P.; Clausmeyer, S.; Puschner, T.; Maser-Gluth, C.; Wrede, H.J.; Kränzlin, B.; Peters, J. StAR expression and the long-term aldosterone response to high-potassium diet in Wistar-Kyoto and spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E16–E23. [Google Scholar] [CrossRef] [Green Version]
- Demura, M.; Wang, F.; Yoneda, T.; Karashima, S.; Mori, S.; Oe, M.; Kometani, M.; Sawamura, T.; Cheng, Y.; Maeda, Y.; et al. Multiple noncoding exons 1 of nuclear receptors NR4A family (nerve growth factor-induced clone B, Nur-related factor 1 and neuron-derived orphan receptor 1) and NR5A1 (steroidogenic factor 1) in human cardiovascular and adrenal tissues. J. Hypertens. 2011, 29, 1185–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierks, A.D.; Urs, D.; Lichtenauer, U.D.; Sackmann, S.; Spyroglou, A.; Shapiro, I.; Geyer, M.; Manonopoulou, J.; Reincke, M.; Hantel, C.; et al. Identification of adrenal genes regulated in a potassium-dependent manner. J. Mol. Endocrinol. 2010, 45, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Demura, M.; Wang, F.; Karashima, S.; Yoneda, T.; Kometani, M.; Aomo, D.; Hashimoto, A.; Horike, S.; Meguro-Horike, M. Effect of potassium on DNA methylation of aldosterone synthase gene. J. Hypertens. 2021. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Demura, M.; Wang, F.; Karashima, S.; Yoneda, T.; Kometani, M.; Hashimoto, A.; Aono, D.; Horike, S.; Meguro-Horike, M.; et al. Epigenetic regulation of aldosterone synthase gene by sodium and angiotensin I.I. J. Am. Heart Assoc. 2018, 7, e008281. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Suzuki, T.; Yoshikawa, Y.; Murakami, O.; Miki, Y.; Moriya, T.; Bassett, M.H.; Rainey, W.E.; Hayashi, Y.; Sasano, H. Nur-related factor 1 and nerve growth factor-induced clone B in human adrenal cortex and its disorders. J. Clin. Endocrinol. Metab. 2004, 89, 4113–4118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, E.F.; Vargas, C.A.; Otis, M.; Gallo-Payet, N.G.; Bollag, W.B.; Rainey, W.E. Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells. J. Mol. Endocrinol. 2007, 39, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, K.; Harris, R.B.S.; Rainey, W.E.; Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 2014, 155, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergaro, G.; Passino, C.; Emdin, M.J. No aldosterone breakthrough with the neprilysin inhibitor sacubitril. Am. Coll. Cardiol. 2019, 73, 3037–3038. [Google Scholar] [CrossRef]
- Narayan., H.; Webb, D.J. New evidence supporting the use of mineralocorticoid receptor blockers in drug-resistant hypertension. Curr. Hypertens. Rep. 2016, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Goenka, L.; Padmanaban, R.; George, M. The ascent of mineralocorticoid receptor antagonists in diabetic nephropathy. Curr. Clin. Pharmacol. 2019, 14, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Bomback, A.S.; Klemmer, P.J. The incidence and implications of aldosterone breakthrough. Nephrology 2007, 3, 486–492. [Google Scholar] [CrossRef]
- Waanders, F.; de Vries, L.V.; van Goor, H.; Hillebrands, J.L.; Laverman, G.D.; Bakker, S.J.; Navis, G. Aldosterone, from (patho)physiology to treatment in cardiovascular and renal damage. Curr. Vasc. Pharmacol. 2011, 9, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Kawarazaki, W.; Fujita, T. The role of aldosterone on obesity-related hypertension. Am. J. Hypertens. 2016, 29, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Di Dalmazi, G.; Morandi, L.; Rubin, B.; Pilon, C.; Asioli, S.; Vicennati, V.; De Leo, A.; Ambrosi, F.; Santini, D.; Pagotto, U.; et al. DNA methylation of steroidogenic enzymes in benign adrenocortical tumors: New insights in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 2020, 105, dgaa585. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.; Wang, Y.; Xekouki, P.; Faucz, F.R.; Jain, M.; Zhang, L.; Meltzer, P.G.; Stratakis, C.A.; Kebebew, E. Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas. J. Clin. Endocrinol. Metab. 2014, 99, E536–E543. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, Y.; Oki, K.; Gomez-Sanchez, C.E.; Ohno, H.; Itcho, K.; Kobuke, K.; Yoneda, M. Hypomethylation of CYP11B2 in aldosterone-producing adenoma. Hypertension 2016, 68, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, K.; Seki, T.; Kurihara, I.; Yokota, K.; Omura, M.; Nishikawa, T.; Shibata, H.; Kosaka, T.; Oya, M.; Suematsu, M.; et al. Case report: Nodule development from subcapsular aldosterone producing cell clusters causes hyperaldosteronism. J. Clin. Endocrinol. Metab. 2016, 101, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Rainey, W.E. The potential role of aldosterone-producing cell clusters in adrenal disease. Horm. Metab. Res. 2020, 52, 427–434. [Google Scholar] [CrossRef]
- De Sousa, K.; Boulkroun, S.; Baron, S.; Nanba, K.; Wack, M.; Rainey, W.E.; Rocha, A.; Giscos-Douriez, I.; Meatchi, T.; Amar, L.; et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 2020, 75, 1034–1044. [Google Scholar] [CrossRef]
- Omata, K.; Anand, S.K.; Hovelson, D.H.; Liu, C.J.; Yamazaki, Y.; Nakamura, Y.; Ito, S.; Satoh, F.; Sasano, H.; Rainey, W.E.; et al. Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in mormal adrenals. J. Endocr. Soc. 2017, 1, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Meyer, L.S.; Feuchtinger, A.; Kunzke, T.; Knösel, T.; Reincke, M.; Walch, A.; Williams, T.A. Mass spectrometry imaging establishes 2 distinct metabolic phenotypes of aldosterone-producing cell clusters in primary aldosteronism. Hypertension 2020, 75, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.P. Primary aldosteronism: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019, 74, 2799–2811. [Google Scholar] [CrossRef]
- Sueta, D.; Yamamoto, E.; Tsujita, K. Mineralocorticoid receptor blockers: Novel selective nonsteroidal mineralocorticoid receptor antagonists. Curr. Hypertens. Rep. 2020, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Armanini, D.; Fiore, C.; Pellati, D. Spontaneous resolution of idiopathic aldosteronism after long-term treatment with potassium canrenoate. Hypertension 2007, 50, e69–e70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E.; Beuschlein, F.; Degenhart, C.; Jung, P.; Bidlingmaier, M.; Reincke, M. Spontaneous remission of idiopathic aldosteronism after long-term treatment with spironolactone: Results from the German Conn’s Registry. Clin. Endocrinol. 2012, 76, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Lucatello, B.; Benso, A.; Tabaro, I.; Capello, E.; Caprino, M.P.; Marafetti, L.; Rossato, D.; Oleandri, S.E.; Ghigo, E.; Maccario, M. Long-term re-evaluation of primary aldosteronism after medical treatment reveals high proportion of normal mineralocorticoid secretion. Eur. J. Endocrinol. 2013, 168, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, T.; Demura, M.; Takata, H.; Kometani, M.; Karashima, S.; Yamagishi, M.; Takeda, Y. Unilateral primary aldosteronism with spontaneous remission after long-term spironolactone therapy. J. Clin. Endocrinol. Metab. 2012, 97, 1109–1113. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Yamashita, T.; Pollock, D.M.; Sasano, H.; William, E.; Rainey, W.E. Contrasting effects of eplerenone and spironolactone on adrenal cell steroidogennesis. Horm. Metab. Res. 2009, 41, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Ammirati, E.; Contri, R.; Coppini, R.; Cecchi, F.; Olivotto, I. Pharmacological treatment of hypertrophic cardiomyopathy: Current practice and novel perspectives. Eur. J. Heart Fail. 2016, 18, 1106–1118. [Google Scholar] [CrossRef]
- Maron, B.J. Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med. 2018, 379, 655–668. [Google Scholar] [CrossRef]
- Geske, J.B.; Ommen, S.R.; Gersh, B.J. Hypertrophic cardiomyopathy: Clinical update. JACC Heart Fail. 2018, 6, 364–375. [Google Scholar] [CrossRef]
- Kitaoka, H.; Kubo, T.; Doi, Y.L. Hypertrophic cardiomyopathy—A heterogeneous and lifelong disease in the real world. Circ. J. 2020, 84, 1218–1226. [Google Scholar] [CrossRef]
- Tuohy, C.V.; Kaul, S.; Song, H.K.; Nazer, B.; Heitner, S.B. Hypertrophic cardiomyopathy: The future of treatment. Eur. J. Heart Fail. 2020, F22, 228–240. [Google Scholar] [CrossRef]
- Huang, C.Y.; Yang, Y.H.; Lin, L.Y.; Tsai, C.T.; Hwang, J.J.; Chen, P.C.; Lin, J.L. Renin-angiotensin-aldosterone blockade reduces atrial fibrillation in hypertorphic cardiomyopathy. Heart 2018, 104, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Dolladille, C.; Douesnel, L.; Font, J.; Dabrowski, R.; Shavit, L.; Legallois, D.; Funck-Brentano, C.; Champ-Rigot, L.; Ollitrault, P.; et al. Effects of Mineralocorticoid Receptor Antagonists on Atrial Fibrillation Occurrence: A systematic review, meta-analysis, and meta-regression to identify modifying factors. Am. Heart Assoc. 2019, 8, e013267. [Google Scholar] [CrossRef]
- Tsybouleva, N.; Zhang, L.; Chen, S.; Patel, R.; Lutucuta, S.; Nemoto, S.; DeFreitas, G.; Entman, M.; Carabello, B.A.; Roberts, R.; et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation 2009, 109, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 2013, 9, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Sztechman, D.; Czarzasta, K.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Zera, T. Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries. J. Physiol. Pharmacol. 2018, 69. [Google Scholar] [CrossRef]
- Takeda, Y. Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist. Hypertens. Res. 2004, 27, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Takeda, Y.; Yoneda, T.; Demura, M.; Miyamori, I.; Mabuchi, H. Cardiac aldosterone production in genetically hypertensive rats. Hypertension 2000, 36, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, M.; Nakamura, S.; Ito, T.; Nakayama, M.; Harada, E.; Mizuno, Y.; Sakamoto, T.; Yamamuro, M.; Saito, Y.; Nakao, K.; et al. Expression of aldosterone synthase gene in failing human heart: Quantitative analysis using modified real-time polymerase chain reaction. J. Clin. Endocrinol. Metab. 2002, 87, 3936–3940. [Google Scholar] [CrossRef]
- Garnier, A.; Bendall, J.K.; Fuchs, S.; Escoubet, B.; Rochais, F.; Hoerter, J.; Nehme, J.; Ambroisine, M.L.; De Angelis, N.; Morineau, G.; et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 2004, 110, 1819–1825. [Google Scholar] [CrossRef]
- Alesutan, I.; Voelkl, J.; Feger, M.; Kratschmar, D.V.; Castor, T.; Mia, S.; Sacherer, M.; Viereck, R.; Borst, O.; Leibrock, C.; et al. Involvement of vascular aldosterone synthase in phosphate-induced osteogenic transformation of vascular smooth muscle cells. Sci. Rep. 2017, 7, 2059. [Google Scholar] [CrossRef] [Green Version]
- Cardona, A.; Baker, P.; Kahwash, R.; Smart, S.; Phay, J.E.; Basso, C.; Raman, S.V. Evidence of aldosterone synthesis in human myocardium in acute myocarditis. Int. J. Cardiol. 2019, 275, 114–119. [Google Scholar] [CrossRef] [PubMed]
- McKenna, W.J.; Judge, D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Yotti, R.; Seidmanm, C.E.; Seidman, J.G. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu. Rev. Genom. Hum. Genet. 2019, 20, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Frantz, E.D.C.; Prodel, E.; Braz, I.D.; Giori, I.G.; Bargut, T.C.L.; Magliano, D.C.; Nobrega, A.C.L. Modulation of the renin-angiotensin-system in white aduoise tissue abd skeletal muscle: Forcus on exercise training. Clin. Sci. 2018, 132, 1487–1507. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ace2/angiotensin-(1-7)/mas axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ace2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Rivière, G.; Lienhard, D.; Andrieu, T.; Vieau, D.; Frey, B.M.; Frey, F.J. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics 2011, 6, 478–489. [Google Scholar] [CrossRef] [Green Version]
- Mudersbach, T.; Siuda, D.; Kohlstedt, K.; Fleming, I. Epigenetic control of the angiotensin-converting enzyme in endothelial cells during inflammation. PLoS ONE 2019, 14, e0216218. [Google Scholar] [CrossRef]
- Lam, D.; Ancelin, M.L.; Ritchie, K.; Saffery, R.; Ryan, J. DNA methylation and genetic variation of the angiotensin converting enzyme (ACE) in depression. Psychoneuroendocrinology 2018, 88, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burford, N.G.; Webster, N.A.; Cruz-Topete, D. Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular System. Int. J. Mol. Sci. 2017, 18, 2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeda, Y.; Demura, M.; Yoneda, T.; Takeda, Y. DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 4587. https://doi.org/10.3390/ijms22094587
Takeda Y, Demura M, Yoneda T, Takeda Y. DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. International Journal of Molecular Sciences. 2021; 22(9):4587. https://doi.org/10.3390/ijms22094587
Chicago/Turabian StyleTakeda, Yoshimichi, Masashi Demura, Takashi Yoneda, and Yoshiyu Takeda. 2021. "DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases" International Journal of Molecular Sciences 22, no. 9: 4587. https://doi.org/10.3390/ijms22094587
APA StyleTakeda, Y., Demura, M., Yoneda, T., & Takeda, Y. (2021). DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. International Journal of Molecular Sciences, 22(9), 4587. https://doi.org/10.3390/ijms22094587