Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Core Questions
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Inclusion and Exclusion Criteria
2.5. Risk of Bias
3. Results
3.1. Data Selection
3.2. Quality Assessment
Reference | Sample Fabrication Technique | Sample Size | Sample Randomization | Sample Power Calculation | Testing Standards | Blinding of Operator | Research Finding | Risk of Bias |
---|---|---|---|---|---|---|---|---|
[19] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[20] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[21] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[22] | 0 | 0 | 2 | 2 | 2 | 2 | 0 | Moderate |
[23] | 0 | 0 | 2 | 1 | 0 | 2 | 0 | Moderate |
[24] | 0 | 0 | 2 | 2 | 2 | 2 | 0 | Moderate |
[25] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[26] | 0 | 0 | 2 | 2 | 2 | 2 | 0 | Moderate |
[27] | 0 | 0 | 2 | 0 | 0 | 2 | 0 | Low |
[28] | 1 | 0 | 2 | 2 | 1 | 2 | 0 | Moderate |
[29] | 1 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[30] | 1 | 1 | 2 | 2 | 0 | 2 | 0 | Moderate |
[31] | 0 | 0 | 2 | 0 | 2 | 2 | 0 | Moderate |
[32] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[33] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[34] | 0 | 0 | 2 | 2 | 2 | 2 | 0 | Moderate |
[35] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[36] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[37] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[38] | 0 | 0 | 2 | 0 | 0 | 2 | 0 | Low |
[39] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
[40] | 0 | 0 | 2 | 2 | 0 | 2 | 0 | Moderate |
3.3. Data Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.A.; Mirza, E.H.; Syed, J.; Al-Khureif, A.; Mehmood, A.; Vallittu, P.K.; Alfotawi, R. Single and multi-walled carbon nanotube fillers in poly(methyl methacrylate)-based implant material. J. Biomater. Tissue Eng. 2017, 7, 798–806. [Google Scholar] [CrossRef]
- Khosravani, M.R. Mechanical behavior of restorative dental composites under various loading conditions. J. Mech. Behav. Biomed. Mater. 2019, 93, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Galav, A.; Deogade, S.C.; Mantri, S.; Sumathi, K.; Galav, S. Effect of water storage on the flexural strength of heat-cured denture base resin reinforced with stick(s) glass fibers. Contemp. Clin. Dent. 2017, 8, 264–271. [Google Scholar] [PubMed]
- Aldegheishem, A.; AlDeeb, M.; Al-Ahdal, K.; Helmi, M.; Alsagob, E.I. Influence of Reinforcing Agents on the Mechanical Properties of Denture Base Resin: A Systematic Review. Polymers 2021, 13, 3083. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Al-Thobity, A.M.; Baba, N.Z.; Al-Harbi, F.A. Influence of addition of different nanoparticles on the surface properties of poly (methylmethacrylate) denture base material. J. Prosthodont. 2020, 29, 422–428. [Google Scholar] [CrossRef]
- Naji, S.A.; Behroozibakhsh, M.; Kashi, T.S.J.; Eslami, H.; Masaeli, R.; Mahgoli, H.; Tahriri, M.; Lahiji, M.G.; Rakhshan, V. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). J. Adv. Prosthodont. 2018, 10, 113–121. [Google Scholar] [CrossRef]
- Rached, R.; Del-Bel Cury, A. Heat-cured acrylic resin repaired with microwave-cured one: Bond strength and surface texture. J. Oral Rehabil. 2001, 28, 370–375. [Google Scholar] [CrossRef]
- Arlen, M.; Dadmun, M. The reinforcement of polystyrene and poly(methyl methacrylate) interfaces using alternating copolymers. Polymer 2003, 44, 6883–6889. [Google Scholar] [CrossRef] [Green Version]
- Bacchi, A.; Consani, R.L.; Martim, G.C.; Pfeifer, C.S. Thio-urethane oligomers improve the properties of light-cured resin cements. Dent. Mater. 2015, 31, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef]
- Kawara, M.; Komiyama, O.; Kimoto, S.; Kobayashi, N.; Kobayashi, K.; Nemoto, K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J. Dent. Res. 1998, 77, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H. Basic properties of thermoplastic resin for denture base materials referred to “non clasp denture”. J. J. Dent. Mater. 2009, 28, 161–167. [Google Scholar]
- AL-Rabab’ah, M.; Hamadneh, W.; Alsalem, I.; Khraisat, A.; Abu Karaky, A. Use of high performance polymers as dental implant abutments and frameworks: A case series report. J. Prosthodont. 2019, 28, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R. Anusavice KJ Phillips’ Science of Dental Materials; Elsevier/Saunders: St. Louis, MO, USA, 2013. [Google Scholar]
- Urban, V.M.; Machado, A.L.; Oliveira, R.V.; Vergani, C.E.; Pavarina, A.C.; Cass, Q.B. Residual monomer of reline acrylic resins: Effect of water-bath and microwave post-polymerization treatments. Dent. Mater. 2007, 23, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Ayman, A.-D. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron. Physician 2017, 9, 4766–4772. [Google Scholar] [CrossRef] [Green Version]
- Sarkis-Onofre, R.; Skupien, J.; Cenci, M.; Moraes, R.; Pereira-Cenci, T. The role of resin cement on bond strength of glass-fiber posts luted into root canals: A systematic review and meta-analysis of in vitro studies. Oper. Dent. 2014, 39, E31–E44. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Abdulwahhab, S.S. High-impact strength acrylic denture base material processed by autoclave. J. Prosthodont. Res. 2013, 57, 288–293. [Google Scholar] [CrossRef]
- Aguirre, B.C.; Chen, J.H.; Kontogiorgos, E.D.; Murchison, D.F.; Nagy, W.W. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J. Prosthet. Dent. 2020, 123, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.A.; Vamshikiran, K.; Deepthi, G.; Kumar, G.N.; Akhilesh, M. Evaluation of Impact Strength of Dental Acrylic Resins by Incorporation of TiO2 Nanoparticles Using Two Different Processing Techniques. J. Contemp. Dent. Pract. 2019, 20, 1184–1189. [Google Scholar] [CrossRef]
- Ayaz, E.A.; Durkan, R.; Koroglu, A.; Bagis, B. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins. J. Appl. Biomater. Funct. Mater. 2014, 12, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, A.E.; Durkan, R. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties. Int. J. Oral Sci. 2013, 5, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Becerra, J.; Mainjot, A.; Hue, O.; Sadoun, M.; Nguyen, J.F. Influence of High-Pressure Polymerization on Mechanical Properties of Denture Base Resins. J. Prosthodont.-Implant Esthet. Reconstr. Dent. 2021, 30, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Consani, R.L.X.; de Paula, A.B.; Fugolin, A.P.P.; Pfeifer, C.S. Effect of the combination of a crosslinking agent and a thiourethane additive on the properties of acrylic denture bases processed with microwave energy. J. Mech. Behav. Biomed. Mater. 2019, 98, 90–95. [Google Scholar] [CrossRef]
- Consani, R.L.X.; de Paula, A.B.; Fugolin, A.P.P.; Pfeifer, C.S. Strategies for Potential Toughening of Acrylic Denture Bases Polymerized With Microwave Energy. Braz. Dent. J. 2020, 31, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2021, in press. [Google Scholar] [CrossRef]
- Gül, E.B.; Atala, M.H.; Eşer, B.; Polat, N.T.; Asiltürk, M.; Gültek, A. Effects of coating with different ceromers on the impact strength, transverse strength and elastic modulus of polymethyl methacrylate. Dent. Mater. J. 2015, 34, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Hayran, Y.; Keskin, Y. Flexural strength of polymethyl methacrylate copolymers as a denture base resin. Dent. Mater. J. 2019, 38, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Iwaki, M.; Kanazawa, M.; Arakida, T.; Minakuchi, S. Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures. J. Oral Sci. 2020, 62, 420–422. [Google Scholar] [CrossRef]
- Kiran, A.; Amin, F.; Lone, M.A.; Moheet, I.A.; Lone, M.M.; Mahmood, S.; Zafar, M.S. Influence of processing techniques on microhardness and impact strength of conventional and reinforced heat cured acrylic resin: A comparative study. Mater. Plast. 2021, 58, 239–246. [Google Scholar] [CrossRef]
- Kiran, A.; Amin, F.; Mahmood, S.J.; Ali, A. Flexural strength of modified and unmodified acrylic denture base material after different processing techniques. J. Ayub Med. Coll. Abbottabad 2020, 32 (Suppl. 1), S672–S677. [Google Scholar] [PubMed]
- Muhsin, S.A.; Hatton, P.V.; Johnson, A.; Sereno, N.; Wood, D.J. Determination of Polyetheretherketone (PEEK) mechanical properties as a denture material. Saudi Dent. J. 2019, 31, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Wakabayashi, N.; Matsushima, R.; Kishida, A.; Igarashi, Y. Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin. J. Mech. Behav. Biomed. Mater. 2013, 20, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, A.; Karthigeyan, S.; Chellapillai, R.; Rajendran, V.; Balavadivel, T.; Velayudhan, A. Effect of novel cycloaliphatic comonomer on the flexural and impact strength of heat-cure denture base resin. J. Oral Sci. 2020, 63, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Raut, A.; Rao, P.L.; Vikas, B.V.; Ravindranath, T.; Paradkar, A.; Malakondaiah, G. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers. Indian J. Dent. Res. 2013, 24, 356–362. [Google Scholar] [CrossRef]
- Sahin, O.; Ozdemir, A.K.; Turgut, M.; Boztug, A.; Sumer, Z. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods. J. Adv. Prosthodont. 2015, 7, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Schoeffel, A.C.; Bagio, P.; Sakima, V.T.; Soares, S.; Neppelenbroek, K.H.; Urban, V.M. Knoop microhardness of conventional and microwaved denture base acrylic resins. Indian J. Dent. Res. 2019, 30, 927–932. [Google Scholar] [CrossRef]
- Spartalis, G.K.; Cappelletti, L.K.; Schoeffel, A.C.; Michél, M.D.; Pegoraro, T.A.; Arrais, C.A.; Neppelenbroek, K.H.; Urban, V.M. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins. Dent. Mater. J. 2015, 34, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Zhao, D.; Wu, Y.; Xu, C. Effect of polyimide addition on mechanical properties of PMMA-based denture material. Dent. Mater. J. 2017, 36, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Chand, P.; Patel, C.B.S.; Singh, B.P.; Singh, R.D.; Singh, K. Mechanical properties of denture base resins: An evaluation. Indian J. Dent. Res. 2011, 22, 180. [Google Scholar]
- Menezes-Silva, R.; Cabral, R.N.; Pascotto, R.C.; Borges, A.F.S.; Martins, C.C.; Navarro, M.F.d.L.; Sidhu, S.K.; Leal, S.C. Mechanical and optical properties of conventional restorative glass-ionomer cements—A systematic review. J. Appl. Oral Sci. 2019, 27. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.M.; Wataha, J.C. Dental Materials-E-Book: Properties and Manipulation; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Rickman, L.J.; Padipatvuthikul, P.; Satterthwaite, J.D. Contemporary denture base resins: Part 1. Dent. Update 2012, 39, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, R.J. Mechanical properties of rubber. In Harris’ Shock and Vibration Handbook, 6th ed.; Piersol, A., Paez, T., Eds.; McGraw-Hill Companies Inc.: New York, NY, USA, 2010; pp. 33.31–33.18. [Google Scholar]
- Pacquet, W.; Benoit, A.; Hatège-Kimana, C.; Wulfman, C. Mechanical properties of CAD/CAM denture base resins. Int. J. Prosthodont. 2019, 32, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Giordano, R. Materials for chairside CAD/CAM–produced restorations. J. Am. Dent. Assoc. 2006, 137, 14S–21S. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Ajay, R.; Suma, K.; Ali, S.A. Monomer modifications of denture base acrylic resin: A systematic review and meta-analysis. J. Pharm. Bioallied Sci. 2019, 11, S112–S125. [Google Scholar] [CrossRef]
- Umemoto, K.; Kurata, S.; Morishita, K.; Kawase, T. Basic study of a new soft resin applied with bisfunctional siloxane oligomer. Dent. Mater. J. 2007, 26, 656–658. [Google Scholar] [CrossRef] [Green Version]
- Cunha, T.R.; Regis, R.R.; Bonatti, M.R.; De Souza, R.F. Influence of incorporation of fluoroalkyl methacrylates on roughness and flexural strength of a denture base acrylic resin. J. Appl. Oral Sci. 2009, 17, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, V.; Murphy, V. Microwave polymerization of denture base materials. A comparative study. J. Oral Rehabil. 1999, 26, 804–808. [Google Scholar] [CrossRef]
- Güngör, A.; Kayaman-Apohan, N.; Mert, A.; Kahraman, M.V. Preparation and characterization of light curable hybrid coating: Its potential application for dental restorative material. J. Polym. Res. 2008, 15, 389–395. [Google Scholar] [CrossRef]
- Durkan, R.; Özel, M.B.; Bagis, B.; Usanmaz, A. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins. Dent. Mater. J. 2008, 27, 640–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polat, T.N.; Karacaer, Ö.; Tezvergil, A.; Lassila, L.V.; Vallittu, P.K. Water sorption, solubility and dimensional changes of denture base polymers reinforced with short glass fibers. J. Biomater. Appl. 2003, 17, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Ng, T.E.; Leong, C.K.; Kim, H.; Li, P.; Waddell, J.N. Adhesive evaluation of three types of resilient denture liners bonded to heat-polymerized, autopolymerized, or CAD-CAM acrylic resin denture bases. J. Prosthet. Dent. 2018, 120, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Samra, A.P.B.; Morais, E.; Mazur, R.F.; Vieira, S.R.; Rached, R.N. CAD/CAM in dentistry—A critical review. Rev. Odonto Cienc. 2016, 31, 140–144. [Google Scholar] [CrossRef]
- Baba, N.Z.; Goodacre, B.J.; Goodacre, C.J.; Müller, F.; Wagner, S. CAD/CAM complete denture systems and physical properties: A review of the literature. J. Prosthodont. 2021, 30, 113–124. [Google Scholar] [CrossRef]
- Srinivasan, M.; Kalberer, N.; Naharro, M.; Marchand, L.; Lee, H.; Müller, F. CAD-CAM milled dentures: The Geneva protocols for digital dentures. J. Prosthet. Dent. 2020, 123, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Leão, R.D.S.; de Moraes, S.L.; Aquino, K.A.d.S.; Isolan, C.P.; Casado, B.G.d.S.; Montes, M.A. Effect of pressure, post-pressing time, and polymerization cycle on the degree of conversion of thermoactivated acrylic resin. Int. J. Dent. 2018, 2018, 5743840. [Google Scholar] [CrossRef]
- Moraes, R.R.; Garcia, J.W.; Barros, M.D.; Lewis, S.H.; Pfeifer, C.S.; Liu, J.; Stansbury, J.W. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent. Mater. 2011, 27, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Bangera, M.K.; Kotian, R.; Ravishankar, N. Effect of titanium dioxide nanoparticle reinforcement on flexural strength of denture base resin: A systematic review and meta-analysis. Jpn. Dent. Sci. Rev. 2020, 56, 68–76. [Google Scholar] [CrossRef]
- Vojdani, M.; Giti, R. Polyamide as a denture base material: A literature review. J. Dent. 2015, 16, 1–9. [Google Scholar]
- An, S.; Evans, J.L.; Hamlet, S.; Love, R.M. Incorporation of antimicrobial agents in denture base resin: A systematic review. J. Prosthet. Dent. 2021, 126, 188–195. [Google Scholar] [CrossRef] [PubMed]
Source | Criteria |
---|---|
Database | Medline/Pubmed, Web of Science, Scopus |
Date of publication | 01 January 2011–31 December 2021 |
Keywords | Experimental denture polymer Novel denture polymer Reinforcement of denture base |
language | English |
Type of paper | in vitro study/analysis |
Inclusion criteria | Mechanical properties of newer denture base material or polymerization method |
Exclusion criteria | Studies related to meta-analysis, review, case report/series, biological/chemical/physical and thermal, clinical trial, denture repair/lining, overdenture, denture teeth, implant/finite element analysis/fixed prosthesis, and filler/fibre reinforced denture base |
Journal category | Dental, Medline, Materials science |
Reference | Testing Method | Denture Base Material | Polymerization Method | Outcome |
---|---|---|---|---|
[19] | SH, FS, IS | High impact PMMA | Compression moulding using a water bath, autoclave | ↑↑ SH, FS and IS in water bath processing and slow autoclave processing groups |
[20] | FS, FM | Heat cure PMMA, CAD-CAM milled resin | Compression moulding using a water bath, injection moulding, CAD-CAM milling | ↑↑ FS, FM of the CAD-CAM milled groups |
[21] | IS | Heat cure PMMA | Compression moulding using a water bath, microwave | ↑↑ in IS of microwave technique compared to water bath group |
[22] | SH | Heat cure PMMA | Compression moulding using a water bath, autoclave for 10 min, autoclave for 20 min | ↑↑ SH in both 10 min and 20 min autoclave polymerization groups |
[23] | FS, FM | Heat cure PMMA, 5%, 10%, 15% and 20% acrylamide monomer in heat cure PMMA | Autoclave, microwave | ↑↑ FS in 15% copolymer group |
[24] | FS, SH | Heat cure PMMA, CAD-CAM block | Compression moulding using a water bath, heat polymerization at 100 °C under high pressure (200 MPa), CAD-CAM milling | ↑↑ FS while ↓↓ SH in CAD blocks. |
[25] | FS, FM, FT | Heat cure PMMA with and without Hexanediol dimethacrylate HDDMA (10, 20, 30 wt%) and TU (10 wt%) | Microwave | 10 wt% HDDMA ↑↑ the mechanical properties (FS, FM & FT) of denture base resin |
[26] | FS | Heat cure PMMA with or without TU in various wt% | Microwave | FS ↓ as glass filler uploading ↑ |
[27] | FS, IS, SH | Heat cure PMMA, 3-D printed denture resin | Compression moulding using a water bath, 3-D printing | ↑↑ FS, IS & SH in Compression moulding groups |
[28] | TS, EM, IS | Heat cure PMMA, heat cure PMMA coated with ceromers | Compression moulding using a water bath | Coating with ceromers ↑↑ the mechanical properties of PMMA denture base |
[29] | FS, FM | Heat cure PMMA, heat cure PMMA copolymerized with EMA, BMA, and IBMA | Compression moulding using a water bath | FS & FM values of all copolymer groups were ↑ than those of the control group |
[30] | FS | Heat cure PMMA | High-pressure dry curing, compression moulding using a water bath | ↑↑ FS in samples fabricated in a dry environment at high pressure |
[31] | SH, IS | Heat cure PMMA, high impact PMMA | Compression moulding using air circulating oven, dry heat, water bath | ↑ SH & IS in rubber reinforced PMMA using air circulating oven and dry heat oven |
[32] | FS | Heat cure PMMA | Compression moulding using air circulating oven, dry heat, water bath | ↑↑ FS in water bath group |
[33] | IS, TS, EM | Heat cure PMMA, PMMA-pressed, PEEK | PEEK-pressed (100 °C, 150 °C, 175 °C & 200 °C) & PEEK-milled | ↑↑ TS & EM in PEEK-milled groups. While ↑ IS in PEEK-pressed at 100 °C |
[34] | FT, FS, EM | Heat cure PMMA | High pressure polymerization at 500, 800 & 980 MPa | ↑↑ FT and ↓↓ FS & EM in high pressure polymerized groups compared to ambient temperature polymerized control group |
[35] | FS, IS | Heat cure PMMA, heat cure PMMA with tricyclodecane dimethanol diacrylate comonomer at 10% and 20% (v/v) | Compression moulding using a water bath | ↑↑ FS & IS in experimental groups |
[36] | FS | Heat cure PMMA | Compression moulding using a water bath, injection moulding thermo-pressed | ↑↑ FS in injection moulded a thermo-pressed group |
[37] | FS | Heat cure PMMA with and without IBMA and HEMA monomers | Compression moulding using a water bath, injection moulding thermo-pressed | Low wt.% of IBMA or HEMA ↑↑ FS |
[38] | SH | Heat cure PMMA | Compression moulding using a water bath, microwave (at 550 W, 630 W or 650 W) | in SH of the control and experimental groups |
[39] | FS, FM | Heat cure PMMA | Compression moulding using a water bath, microwave (at 550 W, 630 W, 650 W or 700 W) | in FS & FM of the control and experimental groups |
[40] | FS | Heat cure PMMA, heat cure PMMA with 0.4, 0.6, 0.8 and 1 wt% polyimide monomer | Compression moulding with heat polymerization at 100 °C for 1 h | ↑↑ FS and FM using low wt.% of polyimide monomer in PMMA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.A.; Fareed, M.A.; Alshehri, A.H.; Aldegheishem, A.; Alharthi, R.; Saadaldin, S.A.; Zafar, M.S. Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 5737. https://doi.org/10.3390/ijms23105737
Khan AA, Fareed MA, Alshehri AH, Aldegheishem A, Alharthi R, Saadaldin SA, Zafar MS. Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(10):5737. https://doi.org/10.3390/ijms23105737
Chicago/Turabian StyleKhan, Aftab Ahmed, Muhammad Amber Fareed, Abdulkarim Hussain Alshehri, Alhanoof Aldegheishem, Rasha Alharthi, Selma A. Saadaldin, and Muhammad Sohail Zafar. 2022. "Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review" International Journal of Molecular Sciences 23, no. 10: 5737. https://doi.org/10.3390/ijms23105737
APA StyleKhan, A. A., Fareed, M. A., Alshehri, A. H., Aldegheishem, A., Alharthi, R., Saadaldin, S. A., & Zafar, M. S. (2022). Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review. International Journal of Molecular Sciences, 23(10), 5737. https://doi.org/10.3390/ijms23105737