The 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl Phthalimide Derivatives as Prodrugs—Spectroscopic and Theoretical Binding Studies with Plasma Proteins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Spectroscopy
2.1.1. Fluorescence Quenching of BSA, AAG, and GG in the Presence of Compounds F1–F4
2.1.2. Quenching Mechanism Analysis
2.1.3. Binding Constant and Thermodynamic Parameters
2.2. Circular Dichroism Spectroscopy
2.3. The ATR-IR Spectroscopy
2.4. Molecular Docking Studies
3. Materials and Methods
3.1. Chemicals
3.2. Spectroscopic Studies
3.2.1. Fluorescence Spectroscopy
3.2.2. Circular Dichroism Spectroscopy
3.2.3. ATR-IR Spectroscopy
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filip, Z.; Jan, K.; Vendula, S.; Jana, K.Z.; Kamil, M.; Kamil, K. Albumin and α1-acid glycoprotein: Old acquaintances. Expert Opin. Drug Metab. Toxicol. 2013, 9, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Wang, L.; Zhou, H.; Jiang, H.D.; Yu, L.S.; Zeng, S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol. Sin. 2013, 34, 998–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, S.C.; Lim, C.K.; Smith, K.D. Analysis of the interaction between alpha-1-acid glycoprotein and tamoxifen and its metabolites. Biomed. Chromatogr. 2003, 17, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Bteich, M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon 2019, 5, e02879. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhu, M.; Xu, C.; Ji, B. Characterization of the baicalein-bovine serum albumin complex without or with Cu 2+or Fe 3+ by spectroscopic approaches. Eur. J. Med. Chem. 2011, 46, 588–599. [Google Scholar] [CrossRef]
- Shi, J.h.; Pan, D.; Wang, X.; Liu, T.T.; Jiang, M.; Wang, Q. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods. J. Photochem. Photobiol. B Biol. 2016, 162, 14–23. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Liu, H.; Peng, Y.; Yan, Y.; Ni, T. Mechanism evaluation of the interactions between eight flavonoids and γ-globulin based on multi-spectroscopy. J. Mol. Struct. 2021, 1225, 129291. [Google Scholar] [CrossRef]
- Owczarzy, A.; Zięba, A.; Pożycka, J.; Kulig, K.; Rogóż, W.; Szkudlarek, A.; Maciążek-jurczyk, M. Spectroscopic studies of quinobenzothiazine derivative in terms of the in vitro interaction with selected human plasma proteins. Part 1. Molecules 2021, 26, 4776. [Google Scholar] [CrossRef]
- Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; et al. Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagoniststs. J. Med. Chem. 1988, 31, 2235–2246. [Google Scholar] [CrossRef]
- Guzior, N.; Bajda, M.; Skrok, M.; Kurpiewska, K.; Lewiński, K.; Brus, B.; Pišlar, A.; Kos, J.; Gobec, S.; Malawska, B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem. 2015, 92, 738–749. [Google Scholar] [CrossRef]
- Godin, A.M.; Araújo, D.P.; Menezes, R.R.; Brito, A.M.S.; Melo, I.S.F.; Coura, G.M.E.; Soares, D.G.; Bastos, L.F.S.; Amaral, F.A.; Ribeiro, L.S.; et al. Activities of 2-phthalimidethanol and 2-phthalimidethyl nitrate, phthalimide analogs devoid of the glutarimide moiety, in experimental models of inflammatory pain and edema. Pharmacol. Biochem. Behav. 2014, 122, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Godin, A.M.; Araújo, D.P.; César, I.C.; Menezes, R.R.; Brito, A.M.S.; Melo, I.S.F.; Coura, G.M.E.; Bastos, L.F.S.; Almeida, M.O.; Byrro, R.M.D.; et al. Activities of 2-phthalimidethyl nitrate and 2-phthalimidethanol in the models of nociceptive response and edema induced by formaldehyde in mice and preliminary investigation of the underlying mechanisms. Eur. J. Pharmacol. 2015, 756, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, N.; Kaushik, D. Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci. 2016, 6, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, H.S.; Hassan Mohammed, M.; Al-Ani, L.A.; Ahmad, M.H.; Hashim, N.M.; Yehye, W.A. Synthesis of Phthalimide Imine Derivatives as a Potential Anticancer Agent. J. Chem. 2020, 2020. [Google Scholar] [CrossRef]
- Szkatuła, D.; Krzyżak, E.; Mogilski, S.; Sapa, J.; Filipek, B.; Świątek, P. Bioresearch of New 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones. Molecules 2020, 25, 5883. [Google Scholar] [CrossRef]
- Dziubina, A.; Szkatuła, D.; Gdula-Argasińska, J.; Sapa, J. Synthesis and antinociceptive activity of four 1 H -isoindolo-1,3(2 H )-diones. Arch. Pharm. 2022, e2100423. [Google Scholar] [CrossRef]
- Chen, G.Z.; Huang, X.Z.; Xu, J.H.; Zneng, Z.Z.; Wang, Z.B. The Methods of Fluorescence Analysis, 2nd ed.; Science: Beijing, China, 1990. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Ware, W.R. Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. J. Phys. Chem. 1962, 66, 455–458. [Google Scholar] [CrossRef]
- Mohammadnia, F.; Fatemi, M.H.; Taghizadeh, S.M. Study on the interaction of anti-inflammatory drugs with human serum albumin using molecular docking, quantitative structure–activity relationship, and fluorescence spectroscopy. Luminescence 2020, 35, 266–273. [Google Scholar] [CrossRef]
- Dufour, C.; Dangles, O. Flavonoid-serum albumin complexation: Determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta-Gen. Subj. 2005, 1721, 164–173. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Bakheit, A.H.; Mohamed, M.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Attia, M.I. Synthesis and biophysical insights into the binding of a potent anti-proliferative non-symmetric bis-isatin derivative with bovine serum albumin: Spectroscopic and molecular docking approaches. Appl. Sci. 2017, 7, 617. [Google Scholar] [CrossRef]
- Suryawanshi, V.D.; Walekar, L.S.; Gore, A.H.; Anbhule, P.V.; Kolekar, G.B. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J. Pharm. Anal. 2016, 6, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Bhat, M.A.; Al-Majed, A.A. Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin. Bioorg. Chem. 2019, 89, 103010. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.A.; Bakheit, A.H.; Al-Majed, A.R.A.; Bhat, M.A.; Zargar, S. Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1,3-dsioxo-1,3-dihydro-2H-isoindol-2-yl)-N-[(4-ethoxy-phenyl) methylidene]benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules 2017, 22, 1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczukowski, Ł.; Redzicka, A.; Wiatrak, B.; Krzyżak, E.; Marciniak, A.; Gębczak, K.; Gębarowski, T.; Świątek, P. Design, synthesis, biological evaluation and in silico studies of novel pyrrolo[3,4-d]pyridazinone derivatives with promising anti-inflammatory and antioxidant activity. Bioorg. Chem. 2020, 102, 104035. [Google Scholar] [CrossRef]
- Krzyżak, E.; Szkatuła, D.; Wiatrak, B.; Gębarowski, T.; Marciniak, A. Synthesis, Cyclooxygenases Inhibition Activities and Interactions with BSA of N-substituted 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones Derivatives. Molecules 2020, 25, 2934. [Google Scholar] [CrossRef]
- Bohnert, T.; Gan, L.S. Plasma protein binding: From discovery to development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef]
- Klotz, I.M.; Urquhart, J.M. The Binding of Organic Ions by Proteins. Effect of Temperature. J. Am. Chem. Soc. 1949, 71, 847–851. [Google Scholar] [CrossRef]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. The Characterization of Two Specific Drug Binding Sites on Human Serum Albumin. Mol. Pharmacol. 1975, 11, 824–832. [Google Scholar]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. Further Characterization of Specific Drug Binding Sites on Human Serum Albumin. Mol. Pharmacol. 1976, 12, 1052–1061. [Google Scholar]
- Li, Y.; He, W.; Liu, J.; Sheng, F.; Hu, Z.; Chen, X. Binding of the bioactive component Jatrorrhizine to human serum albumin. Biochim. Biophys. Acta-Gen. Subj. 2005, 1722, 15–21. [Google Scholar] [CrossRef]
- Maciążek-Jurczyk, M.; Morak-Młodawska, B.; Jeleń, M.; Kopeć, W.; Szkudlarek, A.; Owczarzy, A.; Kulig, K.; Rogóż, W.; Pożycka, J. The influence of oxidative stress on serum albumin structure as a carrier of selected diazaphenothiazine with potential anticancer activity. Pharmaceuticals 2021, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc. 2015, 10, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Pelton, J.T.; McLean, L.R. Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Studies on Amide Ⅳ Infrared Bands for the Secondary Structure Determination of Proteins. Chem. J. Chin. Univ. 2003, 24, 226–231. [Google Scholar]
- Fu, F.-N.; Deoliveira, D.B.; Trumble, W.R.; Sarkar, H.K.; Singh, B.R. Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin. Appl. Spectrosc. 1994, 48, 1432–1441. [Google Scholar] [CrossRef]
- Cai, S.; Singh, B.R. Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophys. Chem. 1999, 80, 7–20. [Google Scholar] [CrossRef]
- Cai, S.; Singh, B.R. A Distinct Utility of the Amide III Infrared Band for Secondary Structure Estimation of Aqueous Protein Solutions Using Partial Least Squares Methods. Biochemistry 2004, 43, 2541–2549. [Google Scholar] [CrossRef]
- Oberg, K.A.; Ruysschaert, J.; Goormaghtigh, E. The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur. J. Biochem. 2015, 2948, 2937–2948. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, Y.; Liang, H. Interactive Association of Drugs Binding to Human Serum Albumin. Int. J. Mol. Sci. 2014, 15, 3580–3595. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.-X.; Jiang, M.; Wang, Y.-D. Spectroscopic investigation of the interaction between human serum albumin and three organic acids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2245–2251. [Google Scholar] [CrossRef]
- Neault, J.F. Interaction of cisplatin with human serum albumin. Drug binding mode and protein secondary structure. Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1998, 1384, 153–159. [Google Scholar] [CrossRef]
- Byler, D.M.; Susi, H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 1986, 25, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, M.-X.; Kang, J.; Zheng, D. Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2747–2758. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian~16 Revision {A}.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785. [Google Scholar] [CrossRef] [Green Version]
Quenching | Binding | Thermodynamic | |||||||
---|---|---|---|---|---|---|---|---|---|
T (K) | Ksv × 105 [dm3·mol−1] | kq × 1013 [dm3·mol−1·s−1] | logKb | Kb × 105 [dm3·mol−1] | n | ΔG° (kJmol−1) | ΔH° (kJmol−1) | ΔS° (Jmol−1K−1) | |
F1 | 297 303 308 | 1.77 1.76 1.50 | 1.77 1.76 1.50 | 5.33 ± 0.20 5.04 ± 0.24 3.82 ± 0.20 | 2.13 1.10 0.61 | 1.00 ± 0.03 0.97 ± 0.04 0.93 ± 0.08 | −30.33 | −85.86 | −186.98 |
F2 | 297 303 308 | 0.29 0.27 0.12 | 0.29 0.27 0.12 | 4.74 ± 0.23 4.21 ± 0.40 3.96 ± 0.14 | 0.55 0.16 0.09 | 1.04 ± 0.03 0.97 ± 0.06 0.97 ± 0.02 | −26.79 | −125.30 | −331.64 |
F3 | 297 303 308 | 2.30 2.07 1.50 | 2.30 2.07 1.50 | 5.24 ± 0.14 4.93 ± 0.08 4.83 ± 0.17 | 1.75 0.85 0.68 | 0.98 ± 0.02 0.93 ± 0.01 0.94 ± 0.02 | −29.67 | −66.22 | −123.04 |
F4 | 297 303 308 | 1.93 1.00 0.89 | 1.93 1.00 0.89 | 5.30 ± 0.27 4.70 ± 0.17 4.36 ± 0.06 | 1.99 0.51 0.27 | 0.99 ± 0.04 0.95 ± 0.03 0.90 ± 0.01 | −30.02 | −125.08 | −410.96 |
Quenching | Binding | Thermodynamic | |||||||
---|---|---|---|---|---|---|---|---|---|
T (K) | Ksv × 103 [dm3·mol−1] | kq × 1011 [dm3·mol−1·s−1] | logKb | Kb × 103 [dm3·mol−1] | n | ΔG° (kJmol−1) | ΔH° (kJmol−1) | ΔS° (Jmol−1 K−1) | |
F1 | 297 303 308 | 6.24 4.39 3.19 | 6.24 4.39 3.19 | 3.33 ± 0.10 3.01 ± 0.20 2.74 ± 0.19 | 2.12 1.02 0.55 | 0.91 ± 0.02 0.87 ± 0.04 0.85 ± 0.03 | −18.88 | −92.31 | −274.25 |
F2 | 297 303 308 | 8.85 2.62 1.52 | 8.85 2.62 1.52 | 3.08 ± 0.10 2.65 ± 0.20 1.89 ± 0.24 | 1.21 0.44 0.08 | 0.83 ± 0.02 0.84 ± 0.03 0.75 ± 0.04 | −17.87 | −186.90 | −569.17 |
F3 | 297 303 308 | 18.25 9.93 4.40 | 18.25 9.93 4.40 | 3.62 ± 0.13 3.16 ± 0.07 2.49 ± 0.15 | 4.17 1.44 0.31 | 0.87 ± 0.02 0.83 ± 0.01 0.77 ± 0.03 | −20.85 | −177.97 | −529.02 |
F4 | 297 303 308 | 22.54 13.99 4.37 | 22.54 13.99 4.37 | 3.44 ± 0.13 3.06 ± 0.03 2.34 ± 0.08 | 2.75 1.16 0.22 | 0.81 ± 0.02 0.78 ± 0.01 0.74 ± 0.02 | −19.93 | −172.46 | −513.66 |
Quenching | Binding | Thermodynamic | |||||||
---|---|---|---|---|---|---|---|---|---|
T (K) | Ksv × 103 [dm3·mol−1] | kq × 1011 [dm3·mol−1·s−1] | logKb | Kb × 103 [dm3·mol−1] | n | ΔG° (kJmol−1) | ΔH° (kJmol−1) | ΔS° (Jmol−1K−1) | |
F1 | 297 303 308 | 10.77 6.83 5.25 | 10.77 6.83 5.25 | 3.87 ± 0.15 3.57 ± 0.20 3.35 ± 0.11 | 7.38 3.71 2.26 | 0.97 ± 0.03 0.95 ± 0.03 0.93 ± 0.02 | −21.93 | −81.27 | −199.7 |
F2 | 297 303 308 | 5.73 4.36 3.81 | 5.73 4.36 3.81 | 4.31 ± 0.17 4.01 ± 0.12 3.97 ± 0.14 | 20.53 10.32 9.26 | 1.09 ± 0.03 0.89 ± 0.02 0.89 ± 0.02 | −24.31 | −55.40 | −104.67 |
F3 | 297 303 308 | 8.28 5.91 5.65 | 8.28 5.91 5.65 | 5.30 ± 0.19 4.91 ± 0.16 4.19 ± 0.24 | 199.8 81.43 15.50 | 1.24 ± 0.03 1.20 ± 0.03 1.08 ± 0.04 | −30.52 | −174.11 | −483.46 |
F4 | 297 303 308 | 31.80 27.04 16.71 | 31.80 27.04 16.71 | 4.61 ± 0.18 4.31 ± 0.07 3.97 ± 0.10 | 41.04 20.34 9.33 | 1.02 ± 0.03 0.98 ± 0.02 0.96 ± 0.02 | −26.41 | −104.54 | −263.06 |
Site Marker | logKb | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
BSA | 5.33 ± 0.20 | 4.74 ± 0.23 | 5.23 ± 0.14 | 5.30 ± 0.27 |
BSA + PHE (site I) | 4.96 ± 0.17 | 4.55 ± 0.07 | 5.09 ± 0.26 | 5.08 ± 0.24 |
BSA + IBP (site II) | 3.47 ± 0.19 | 3.55 ± 0.19 | 3.17 ± 0.16 | 3.90 ± 0.32 |
Wavenumber Band cm−1 | Assignments | ||
---|---|---|---|
BSA | AAG | GG | |
1651 | 1634 | 1639 | Amide I—ν(C=O), ν(C–N), δ(N–H) |
1545 | 1548 | 1548 | Amide II—δ(N–H), ν(C–N) |
1450 | 1452 | 1452 | δs(CH3), δas(CH3) |
1399 | 1402 | 1401 | νs(COO-) |
1301 | 1318 | - | Amide III—ν(C–N), δ(C–N), δ(O=C–N) |
1246 | 1245 | 1240 | ν(C–O), δ(C–H2) |
1173 | 1152 | 1048 | ν(C–O) |
1121 | ν(C–O) |
Binding Free Energy ΔG° [kJmol−1] | ||||
---|---|---|---|---|
Compound | BSA | AAG | GG | |
Site I | Site II | |||
F1 | −30.72 | −36.44 | −34.31 | −34.00 |
F2 | −28.88 | −34.99 | −33.23 | −34.97 |
F3 | −27.50 | −36.40 | −34.02 | −33.83 |
F4 | −34.06 | −40.71 | −39.28 | −35.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniak, A.; Kotynia, A.; Szkatuła, D.; Krzyżak, E. The 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl Phthalimide Derivatives as Prodrugs—Spectroscopic and Theoretical Binding Studies with Plasma Proteins. Int. J. Mol. Sci. 2022, 23, 7003. https://doi.org/10.3390/ijms23137003
Marciniak A, Kotynia A, Szkatuła D, Krzyżak E. The 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl Phthalimide Derivatives as Prodrugs—Spectroscopic and Theoretical Binding Studies with Plasma Proteins. International Journal of Molecular Sciences. 2022; 23(13):7003. https://doi.org/10.3390/ijms23137003
Chicago/Turabian StyleMarciniak, Aleksandra, Aleksandra Kotynia, Dominika Szkatuła, and Edward Krzyżak. 2022. "The 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl Phthalimide Derivatives as Prodrugs—Spectroscopic and Theoretical Binding Studies with Plasma Proteins" International Journal of Molecular Sciences 23, no. 13: 7003. https://doi.org/10.3390/ijms23137003
APA StyleMarciniak, A., Kotynia, A., Szkatuła, D., & Krzyżak, E. (2022). The 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl Phthalimide Derivatives as Prodrugs—Spectroscopic and Theoretical Binding Studies with Plasma Proteins. International Journal of Molecular Sciences, 23(13), 7003. https://doi.org/10.3390/ijms23137003