Metal–Organic Frameworks Meet Metallic Oxide on Carbon Fiber: Synergistic Effect for Enhanced Photodegradation of Antibiotic Pollutant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Photocatalytic Degradation of TC
2.3. Optical and Electronic Properties
2.4. Possible Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Photocatalytic Materials
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Liu, Y. Circular economy is game–changing municipal wastewater treatment technology towards energy and carbon neutrality. Chem. Eng. J. 2022, 429, 132114. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Wang, X.; Yi, X.; Zhao, Y.; He, X.; Wu, R.; Huang, M. Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system. Environ. Res 2022, 211, 112942. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Qin, F.; Zhang, X.; Zhong, Y.; Wang, J.; Jiao, Y.; Luo, Y.; Feng, W. Synthesis of tin–doped three–dimensional flower–like bismuth tungstate with enhanced photocatalytic activity. Int. J. Mol. Sci. 2022, 23, 8422. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, J.; Vieira, Y.; Welter, N.; Silvestri, S.; Dotto, G.L.; Carissimi, E. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. 2022, 160, 25–40. [Google Scholar] [CrossRef]
- Liu, N.; Shang, Q.; Gao, K.; Cheng, Q.; Pan, Z. Construction of ZnO/ZIF–9 heterojunction photocatalyst: Enhanced photocatalytic performance and mechanistic insight. New J. Chem. 2020, 44, 6384–6393. [Google Scholar] [CrossRef]
- Luo, L.; Dong, S.; Chen, H.; Jin, H.; Huang, T. Construction of MgIn2S4/ZnIn2S4 micro–flowers: Efficient degradation of tetracycline hydrochloride over a wide pH range. Appl. Surf. Sci. 2022, 581, 152417. [Google Scholar] [CrossRef]
- Ding, C.; Zhu, Q.; Yang, B.; Petropoulos, E.; Xue, L.; Feng, Y.; He, S.; Yang, L. Efficient photocatalysis of tetracycline hydrochloride (TC–HCl) from pharmaceutical wastewater using AgCl/ZnO/g–C3N4 composite under visible light: Process and mechanisms. J. Environ. Sci. 2022, 126, 249–262. [Google Scholar] [CrossRef]
- Yang, J.; Han, L.; Yang, W.; Liu, Q.; Fei, Z.; Chen, X.; Zhang, Z.; Tang, J.; Cui, M.; Qiao, X. In situ synthetic hierarchical porous MIL–53(Cr) as an efficient adsorbent for mesopores–controlled adsorption of tetracycline. Micropor. Mesopor. Mater. 2022, 332, 111667. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Z.; Luo, L.; Liu, Z.; Macharia, D.K.; Duoerkun, G.; Shen, C.; Liu, J.; Zhang, L. Construction of titanium dioxide/cadmium sulfide heterojunction on carbon fibers as weavable photocatalyst for eliminating various contaminants. J. Colloid Interface Sci. 2020, 561, 307–317. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Qi, Y.; Wang, Y.; Long, F.; Wang, M. Preparation of flower–like BiOBr/Bi2WO6 Z–scheme heterojunction through an ion exchange process with enhanced photocatalytic activity. Mater. Sci. Semicon. Proc. 2022, 137, 106195. [Google Scholar] [CrossRef]
- Zaharia, M.; Vasiliu, A.; Trofin, M.; Pamfil, D.; Bucatariu, F.; Racovita, S.; Mihai, M. Design of multifunctional composite materials based on acrylic ion exchangers and CaCO3 as sorbents for small organic molecules. React. Funct. Polym. 2021, 166, 104997. [Google Scholar] [CrossRef]
- Yang, Y.; Bian, Z.; Zhang, L.; Wang, H. Bi@BiOx(OH)y modified oxidized g–C3N4 photocatalytic removal of tetracycline hydrochloride with highly effective oxygen activation. J. Hazard. Mater. 2022, 427, 127866. [Google Scholar] [CrossRef] [PubMed]
- Munisamy, M.; Yang, H.W.; Perumal, N.; Kang, N.; Kang, W.S.; Kim, S.J. A flower–like In2O3 catalyst derived via metal–organic frameworks for photocatalytic applications. Int. J. Mol. Sci. 2022, 23, 4398. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, B.; Hao, Z.; Zhou, Z.; Qu, Y. Boosting charge separation and broadening NIR light response over defected WO3 quantum dots coupled g–C3N4 nanosheets for photocatalytic degrading antibiotics. Chem. Eng. J. 2021, 416, 129109. [Google Scholar] [CrossRef]
- Bai, W.; Wu, M.; Du, X.; Gong, W.; Ding, Y.; Song, C.; Liu, L. Synergistic effect of multiple–phase rGO/CuO/Cu2O heterostructures for boosting photocatalytic activity and durability. App. Surf. Sci. 2021, 544, 148607. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, H.; Yi, M.; Xiao, G.; Xu, S.; Shen, S.; Feng, B. In–situ growth of Ag3PO4 on calcined Zn–Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment. Appl. Catal. B–Environ. 2019, 252, 47–54. [Google Scholar] [CrossRef]
- Liu, J.; Lin, H.; He, Y.; Dong, Y.; Menzembere, E.R.G.Y. Novel CoS2/MoS2@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. J. Hazard. Mater. 2020, 260, 121047. [Google Scholar] [CrossRef]
- Kassem, K.O.; Hussein, M.A.T.; Motawea, M.M.; Gomaa, H.; Alrowaili, Z.A.; Ezzeldien, M. Design of mesoporous ZnO@silica fume–derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. J. Clean. Prod. 2021, 326, 129416. [Google Scholar] [CrossRef]
- Almofty, S.A.; Nawaz, M.; Qureshi, F.; Almutairi, R. Hydrothermal synthesis of beta–Nb2ZnO6 nanoparticles for photocatalytic degradation of methyl orange and cytotoxicity study. Int. J. Mol. Sci. 2022, 23, 4777. [Google Scholar] [CrossRef]
- Tao, J.; Lee, M.; Sushko, M.L.; De Yoreo, J.J.; Liu, J.; Zhang, Z.; Banerjee, D.; Akkineni, S.; Bowden, M.E.; Thallapally, P.K.; et al. Controlling metal–organic framework/ZnO heterostructure kinetics through selective ligand binding to ZnO surface steps. Chem. Mater. 2020, 32, 66–75. [Google Scholar] [CrossRef]
- Cao, X.M.; Han, Z.B. Hollow core–shell ZnO@ZIF–8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem. Commun. 2019, 55, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Taghizadeh, A.; Taghizadeh, M.; Abdi, J. In situ deposition of Ag/AgCl on the surface of magnetic metal–organic framework nanocomposite and its application for the visible–light photocatalytic degradation of Rhodamine dye. J. Hazard. Mater. 2019, 378, 120741. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Liu, L.; Zhang, L.; Zhang, D.; Wang, Y.; Cui, X.; Zheng, W. 1D alignment of ZnO@ZIF–8/67 nanorod arrays for visible–light–driven photoelectrochemical water splitting. Appl. Surf. Sci. 2018, 448, 254–260. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Xu, S.; Guo, Y.; Kang, S.; Chang, X. H2+CO2 synergistic plasma positioning carboxyl defects in g–C3N4 with engineered eectronic structure and active sites for efficient photocatalytic H2 evolution. Int. J. Mol. Sci. 2022, 23, 7381. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Liang, Q.; Zhou, M.; Yao, C.; Xu, S.; Li, Z. Core–shell ZIF–8@MIL–68(In) derived ZnO nanoparticles–embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. J. Hazard. Mater. 2021, 414, 125395. [Google Scholar] [CrossRef]
- Yuan, X.; Qu, S.; Huang, X.; Xue, X.; Yuan, C.; Wang, S.; Wei, L.; Cai, P. Design of core–shelled g–C3N4@ZIF–8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem. Eng. J. 2021, 416, 129148. [Google Scholar] [CrossRef]
- Chen, W.–Q.; Li, L.–Y.; Li, L.; Qiu, W.–H.; Tang, L.; Xu, L.; Xu, K.–J.; Wu, M.–H. MoS2/ZIF–8 Hybrid Materials for Environmental Catalysis: Solar–Driven Antibiotic–Degradation Engineering. Engineering 2019, 5, 755–767. [Google Scholar] [CrossRef]
- Li, X.; He, W.; Li, C.; Song, B.; Liu, S. Synergetic surface modulation of ZnO/Pt@ZIF–8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl. Catal. B Environ. 2021, 287, 119934. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S.X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Cui, J.; Chen, C.; Zhu, X.; Sun, D.; Qian, J. Visible–light driven degradation of tetracycline hydrochloride and 2,4–dichlorophenol by film–like N–carbon@N–ZnO catalyst with three–dimensional interconnected nanofibrous structure. J. Hazard. Mater. 2020, 392, 122331. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, J.; Liu, C.; Zou, Y.; Yuan, L.; Wang, J.; Yu, C. ZnO nanoparticles embedded in hollow carbon fiber membrane for electrochemical H2O2 production by two–electron water oxidation reaction. Environ. Res. 2022, 206, 112290. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xiong, T.; Huang, P.; Zhou, S.; Tan, Q.; Yang, H.; Huang, Y.; Balogun, M.S. Nanostructured transition metal compounds coated 3D porous core–shell carbon fiber as monolith water splitting electrocatalysts: A general strategy. Chem. Eng. J. 2021, 423, 130279. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, J.; Peng, Z.; Fu, X. Metal W connected Z–scheme C fibers@WO3–X core–shell composites with highly efficient solar–driven photocatalystic activity. Ceram. Int. 2020, 46, 18562–18572. [Google Scholar] [CrossRef]
- Patil, S.J.; Chodankar, N.R.; Hwang, S.–K.; Shinde, P.A.; Raju, G.S.R.; Ranjith, K.S.; Huh, Y.S.; Han, Y.–K. Co–metal–organic framework derived CoSe2@MoSe2 core–shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 429, 132379. [Google Scholar] [CrossRef]
- Ji, P.; Hu, X.; Tian, R.; Zheng, H.; Sun, J.; Zhang, W.; Peng, J. Atom–economical synthesis of ZnO@ZIF–8 core–shell heterostructure by dry gel conversion (DGC) method for enhanced H2 sensing selectivity. J. Mater. Chem. C 2020, 8, 2927–2936. [Google Scholar] [CrossRef]
- Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agric. Food Chem. 2015, 63, 7–14. [Google Scholar] [CrossRef]
- Tuncel, D.; Ökte, A.N. Improved adsorption capacity and photoactivity of ZnO–ZIF–8 nanocomposites. Catal. Today 2021, 361, 191–197. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.; Park, J.; Lim, N.; Lee, R.; Cho, S.J.; Kumaresan, Y.; Oh, M.K.; Jung, G.Y. Surface conversion of ZnO nanorods to ZIF–8 to suppress surface defects for a visible–blind UV photodetector. Nanoscale 2018, 10, 21168–21177. [Google Scholar] [CrossRef]
- Ma, T.; Bai, J.; Li, C. Facile synthesis of g–C3N4 wrapping on one–dimensional carbon fiber as a composite photocatalyst to degrade organic pollutants. Vacuum 2017, 145, 47–54. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Chi, H.; Xu, T.; Guo, Y.; Yuan, Y.; Yang, B. Ultrafine 1D graphene interlayer in g–C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation. Chem. Eng. J. 2019, 359, 1352–1359. [Google Scholar] [CrossRef]
- Tran Thi, V.H.; Lee, B.K. Great improvement on tetracycline removal using ZnO rod–activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 2017, 324, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, Z.; Du, B.; Zhang, Y.; Zhang, R. Visible–light–driven zeolite imidazolate frameworks–8@ZnO composite for heavy metal treatment. Compos. Part B Eng. 2020, 183, 107685. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, Z.; Yu, J.; Wang, H.; Li, Y.; Duan, Y. Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF–8 coating. Chem. Eng. J. 2020, 383, 123230. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, D.; Wang, Y.; Liu, X.; Gao, P.; Liu, W.; Wen, J.; Rebrov, E.V. One–step synthesis of ZIF–8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis. J. Alloys Compd. 2020, 838, 155219. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, L.; Lu, Y.; Fan, Y.; Guo, S.; Adimi, S.; Liu, D.; Ruan, S. Metal–organic frameworks–derived hierarchical ZnO structures as efficient sensing materials for formaldehyde detection. Chinese Chem. Lett. 2020, 31, 2071–2076. [Google Scholar] [CrossRef]
- Li, T.; Fang, Q.; Xi, X.; Chen, Y.; Liu, F. Ultra–robust carbon fibers for multi–media purification via solar–evaporation. J. Mater. Chem. A 2019, 7, 586–593. [Google Scholar] [CrossRef]
- Alnaggar, G.; Hezam, A.; Drmosh, Q.A.; Ananda, S. Sunlight–driven activation of peroxymonosulfate by microwave synthesized ternary MoO3/Bi2O3/g–C3N4 heterostructures for boosting tetracycline hydrochloride degradation. Chemosphere 2021, 272, 129807. [Google Scholar] [CrossRef]
- Silva, C.G.; Corma, A.; García, H. Metal–organic frameworks as semiconductors. J. Mater. Chem. 2010, 20, 3141. [Google Scholar] [CrossRef]
- Wei, N.; Cui, H.; Wang, X.; Xie, X.; Wang, M.; Zhang, L.; Tian, J. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: Enhanced photocatalytic and gassensing properties. J. Colloid Interf. Sci. 2017, 498, 263–270. [Google Scholar] [CrossRef]
- Fan, G.; Zheng, X.; Luo, J.; Peng, H.; Lin, H.; Bao, M.; Hong, L.; Zhou, J. Rapid synthesis of Ag/AgCl@ZIF–8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light. Chem. Eng. J. 2018, 351, 782–790. [Google Scholar] [CrossRef]
- Long, G.; Ding, J.; Xie, L.; Sun, R.; Chen, M.; Zhou, Y.; Huang, X.; Han, G.; Li, Y.; Zhao, W. Fabrication of mediator–free g–C3N4/Bi2WO6 Z–scheme with enhanced photocatalytic reduction dechlorination performance of 2,4–DCP. Appl. Surf. Sci. 2018, 455, 1010–1018. [Google Scholar] [CrossRef]
- Kaur Ubhi, M.; Kaur, M.; Singh, D.; Javed, M.; Oliveira, A.C.; Garg, V.K.; Sharma, V.K. Hierarchical nanoflowers of MgFe2O4, bentonite and B–,P– Co–doped graphene oxide as adsorbent and photocatalyst: Optimization of parameters by box–behnken methodology. Int. J. Mol. Sci. 2022, 23, 9678. [Google Scholar] [CrossRef] [PubMed]
Sample | Mass (g) | pH | C0(mg/L) | V(mL) | k (min−1) | R2 | Photodegradation Rate (%) |
---|---|---|---|---|---|---|---|
Zn–CF | 0.08 | 3 | 50 | 50 | 0.0178 | 0.966 | 80.12% |
Zn–CF | 0.08 | 4 | 50 | 50 | 0.0158 | 0.903 | 80.13% |
Zn–CF | 0.08 | 5 | 50 | 50 | 0.0198 | 0.937 | 81.73% |
Zn–CF | 0.08 | 6 | 50 | 50 | 0.0136 | 0.748 | 82.02% |
ZI–CF | 0.08 | 3 | 50 | 50 | 0.0184 | 0.951 | 79.55% |
ZI–CF | 0.08 | 4 | 50 | 50 | 0.0164 | 0.964 | 78.60% |
ZI–CF | 0.08 | 5 | 50 | 50 | 0.0147 | 0.880 | 80.20% |
ZI–CF | 0.08 | 6 | 50 | 50 | 0.0185 | 0.886 | 81.14% |
ZZ–CF | 0.08 | 3 | 50 | 50 | 0.0140 | 0.984 | 74.68% |
ZZ–CF | 0.08 | 4 | 50 | 50 | 0.0214 | 0.946 | 88.47% |
ZZ–CF | 0.08 | 5 | 50 | 50 | 0.0220 | 0.980 | 87.18% |
ZZ–CF | 0.08 | 6 | 50 | 50 | 0.0185 | 0.978 | 83.65% |
ZZ–CF | 0.01 | 4 | 50 | 50 | 0.0100 | 0.976 | 66.27% |
ZZ–CF | 0.04 | 4 | 50 | 50 | 0.0171 | 0.810 | 81.41% |
ZZ–CF | 0.12 | 4 | 50 | 50 | 0.0214 | 0.872 | 88.78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, N.; Zhou, S.; Zhang, C.; Fu, Z.; Gong, J.; Zhou, Z.; Wang, X.; Lyu, P.; Li, L.; Xia, L. Metal–Organic Frameworks Meet Metallic Oxide on Carbon Fiber: Synergistic Effect for Enhanced Photodegradation of Antibiotic Pollutant. Int. J. Mol. Sci. 2022, 23, 11286. https://doi.org/10.3390/ijms231911286
Zhu N, Zhou S, Zhang C, Fu Z, Gong J, Zhou Z, Wang X, Lyu P, Li L, Xia L. Metal–Organic Frameworks Meet Metallic Oxide on Carbon Fiber: Synergistic Effect for Enhanced Photodegradation of Antibiotic Pollutant. International Journal of Molecular Sciences. 2022; 23(19):11286. https://doi.org/10.3390/ijms231911286
Chicago/Turabian StyleZhu, Na, Sijie Zhou, Chunhua Zhang, Zhuan Fu, Junyao Gong, Zhaozixuan Zhou, Xiaofeng Wang, Pei Lyu, Li Li, and Liangjun Xia. 2022. "Metal–Organic Frameworks Meet Metallic Oxide on Carbon Fiber: Synergistic Effect for Enhanced Photodegradation of Antibiotic Pollutant" International Journal of Molecular Sciences 23, no. 19: 11286. https://doi.org/10.3390/ijms231911286
APA StyleZhu, N., Zhou, S., Zhang, C., Fu, Z., Gong, J., Zhou, Z., Wang, X., Lyu, P., Li, L., & Xia, L. (2022). Metal–Organic Frameworks Meet Metallic Oxide on Carbon Fiber: Synergistic Effect for Enhanced Photodegradation of Antibiotic Pollutant. International Journal of Molecular Sciences, 23(19), 11286. https://doi.org/10.3390/ijms231911286