Spatial Structure of NanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2
Abstract
:1. Introduction
2. Results
2.1. Structure of NanoFAST in the Apo State
2.2. Structure of nanoFAST/HBR-DOM2 Complex
2.3. Dynamics of nanoFAST
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. NMR Spectroscopy
4.3. Structure Calculation
4.4. Intramolecular Mobility
4.5. Measurement of Dissociation Constants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Broch, F.; Gautier, A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. ChemPlusChem 2020, 85, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, L.; Liu, R.; Lin, S.; Wu, F.; Liu, J. Encoding with a Fluorescence-Activating and Absorption-Shifting Tag Generates Living Bacterial Probes for Mammalian Microbiota Imaging. Mater. Today Bio. 2022, 15, 100311. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Costa, K.C. The Fluorescence-Activating and Absorption-Shifting Tag (FAST) Enables Live-Cell Fluorescence Imaging of Methanococcus Maripaludis. J. Bacteriol. 2022, 19, e00122. [Google Scholar] [CrossRef]
- Povarova, N.V.; Zaitseva, S.O.; Baleeva, N.S.; Smirnov, A.Y.; Myasnyanko, I.N.; Zagudaylova, M.B.; Bozhanova, N.G.; Gorbachev, D.A.; Malyshevskaya, K.K.; Gavrikov, A.S.; et al. Red-Shifted Substrates for FAST Fluorogen-Activating Protein Based on the GFP-Like Chromophores. Chem. –A Eur. J. 2019, 25, 9592–9596. [Google Scholar] [CrossRef] [PubMed]
- Benaissa, H.; Ounoughi, K.; Aujard, I.; Fischer, E.; Goïame, R.; Nguyen, J.; Tebo, A.G.; Li, C.; Saux, T.L.; Danglot, L.; et al. An Engineered Multifunctional Protein Tag for Advanced Fluorescence Imaging. Nat. Commun. 2021, 12, 6989. [Google Scholar] [CrossRef]
- Plamont, M.-A.; Billon-Denis, E.; Maurin, S.; Gauron, C.; Pimenta, F.M.; Specht, C.G.; Shi, J.; Quérard, J.; Pan, B.; Rossignol, J.; et al. Small Fluorescence-Activating and Absorption-Shifting Tag for Tunable Protein Imaging in Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 497–502. [Google Scholar] [CrossRef]
- Tebo, A.G.; Pimenta, F.M.; Zhang, Y.; Gautier, A. Improved Chemical-Genetic Fluorescent Markers for Live Cell Microscopy. Biochemistry 2018, 57, 5648–5653. [Google Scholar] [CrossRef]
- Li, C.; Tebo, A.G.; Thauvin, M.; Plamont, M.-A.; Volovitch, M.; Morin, X.; Vriz, S.; Gautier, A. A Far-Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging. Angew. Chem. Int. Ed. 2020, 59, 17917–17923. [Google Scholar] [CrossRef]
- Tebo, A.G.; Moeyaert, B.; Thauvin, M.; Carlon-Andres, I.; Böken, D.; Volovitch, M.; Padilla-Parra, S.; Dedecker, P.; Vriz, S.; Gautier, A. Orthogonal Fluorescent Chemogenetic Reporters for Multicolor Imaging. Nat. Chem. Biol. 2021, 17, 30–38. [Google Scholar] [CrossRef]
- Tebo, A.G.; Gautier, A. A Split Fluorescent Reporter with Rapid and Reversible Complementation. Nat. Commun. 2019, 10, 2822. [Google Scholar] [CrossRef] [Green Version]
- Mineev, K.S.; Goncharuk, S.A.; Goncharuk, M.V.; Povarova, N.V.; Sokolov, A.I.; Baleeva, N.S.; Smirnov, A.Y.; Myasnyanko, I.N.; Ruchkin, D.A.; Bukhdruker, S.; et al. NanoFAST: Structure-Based Design of a Small Fluorogen-Activating Protein with Only 98 Amino Acids. Chem. Sci. 2021, 12, 6719–6725. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, M.V.; Baleeva, N.S.; Nolde, D.E.; Gavrikov, A.S.; Mishin, A.V.; Mishin, A.S.; Sosorev, A.Y.; Arseniev, A.S.; Goncharuk, S.A.; Borshchevskiy, V.I.; et al. Structure-Based Rational Design of an Enhanced Fluorogen-Activating Protein for Fluorogens Based on GFP Chromophore. Commun. Biol. 2022, 5, 706. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.; Steiner, T. The Weak Hydrogen Bond; Oxford University Press: Oxford, UK, 2001; ISBN 978-0-19-850970-7. [Google Scholar]
- Myasnyanko, I.N.; Gavrikov, A.S.; Zaitseva, S.O.; Smirnov, A.Y.; Zaitseva, E.R.; Sokolov, A.I.; Malyshevskaya, K.K.; Baleeva, N.S.; Mishin, A.S.; Baranov, M.S. Color Tuning of Fluorogens for FAST Fluorogen-Activating Protein. Chem. –A Eur. J. 2021, 27, 3986–3990. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.I.; Myasnyanko, I.N.; Baleeva, N.S.; Baranov, M.S. Styrene Derivatives of Indole and Pyranone as Fluorogenic Substrates for FAST Protein. Russ. J. Bioorg. Chem. 2021, 47, 334–337. [Google Scholar] [CrossRef]
- Li, C.; Plamont, M.-A.; Sladitschek, H.L.; Rodrigues, V.; Aujard, I.; Neveu, P.; Saux, T.L.; Jullien, L.; Gautier, A. Dynamic Multicolor Protein Labeling in Living Cells. Chem. Sci. 2017, 8, 5598–5605. [Google Scholar] [CrossRef]
- Keller, R.L.J. The Computer Aided Resonance Assignment Tutorial; CANTINA Verlag: Goldau, Switzerland, 2004. [Google Scholar]
- Favier, A.; Brutscher, B. Recovering Lost Magnetization: Polarization Enhancement in Biomolecular NMR. J. Biomol. NMR 2011, 49, 9–15. [Google Scholar] [CrossRef]
- Mayzel, M.; Kazimierczuk, K.; Orekhov, V.Y. The Causality Principle in the Reconstruction of Sparse NMR Spectra. Chem. Commun. 2014, 50, 8947–8950. [Google Scholar] [CrossRef]
- Löhr, F.; Hänsel, R.; Rogov, V.V.; Dötsch, V. Improved Pulse Sequences for Sequence Specific Assignment of Aromatic Proton Resonances in Proteins. J. Biomol. NMR 2007, 37, 205–224. [Google Scholar] [CrossRef]
- Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. Transverse Relaxation-Optimized Spectroscopy (TROSY) for NMR Studies of Aromatic Spin Systems in 13C-Labeled Proteins. J. Am. Chem. Soc. 1998, 120, 6394–6400. [Google Scholar] [CrossRef]
- Vuister, G.W.; Wang, A.C.; Bax, A. Measurement of Three-Bond Nitrogen-Carbon J Couplings in Proteins Uniformly Enriched in Nitrogen-15 and Carbon-13. J. Am. Chem. Soc. 1993, 115, 5334–5335. [Google Scholar] [CrossRef]
- Grzesiek, S.; Vuister, G.W.; Bax, A. A Simple and Sensitive Experiment for Measurement of JCC Couplings between Backbone Carbonyl and Methyl Carbons in Isotopically Enriched Proteins. J. Biomol. NMR 1993, 3, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Düx, P.; Whitehead, B.; Boelens, R.; Kaptein, R.; Vuister, G.W. Measurement of (15)N- (1)H Coupling Constants in Uniformly (15)N-Labeled Proteins: Application to the Photoactive Yellow Protein. J. Biomol. NMR 1997, 10, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Iwahara, J.; Wojciak, J.M.; Clubb, R.T. Improved NMR Spectra of a Protein–DNA Complex through Rational Mutagenesis and the Application of a Sensitivity Optimized Isotope-Filtered NOESY Experiment. J. Biomol. NMR 2001, 19, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Zwahlen, C.; Legault, P.; Vincent, S.J.F.; Greenblatt, J.; Konrat, R.; Kay, L.E. Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/BoxB RNA Complex. J. Am. Chem. Soc. 1997, 119, 6711–6721. [Google Scholar] [CrossRef]
- Güntert, P.; Buchner, L. Combined Automated NOE Assignment and Structure Calculation with CYANA. J. Biomol. NMR 2015, 62, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Bax, A. Protein Structural Information Derived from NMR Chemical Shift with the Neural Network Program TALOS-N. Methods Mol. Biol. 2015, 1260, 17–32. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Koradi, R.; Billeter, M.; Wüthrich, K. MOLMOL: A Program for Display and Analysis of Macromolecular Structures. J. Mol. Graph. 1996, 14, 51–55. [Google Scholar] [CrossRef]
- Farrow, N.A.; Muhandiram, R.; Singer, A.U.; Pascal, S.M.; Kay, C.M.; Gish, G.; Shoelson, S.E.; Pawson, T.; Forman-Kay, J.D.; Kay, L.E. Backbone Dynamics of a Free and Phosphopeptide-Complexed Src Homology 2 Domain Studied by 15N NMR Relaxation. Biochemistry 1994, 33, 5984–6003. [Google Scholar] [CrossRef]
- Dosset, P.; Hus, J.C.; Blackledge, M.; Marion, D. Efficient Analysis of Macromolecular Rotational Diffusion from Heteronuclear Relaxation Data. J. Biomol. NMR 2000, 16, 23–28. [Google Scholar] [CrossRef]
Structure | nanoFAST | nanoFAST/HBR-DOM2 |
---|---|---|
NMR distance and dihedral constraints | ||
Distance constraints | ||
Total NOE | 1994 | 1390 |
Intra-residue | 459 | 349 |
Inter-residue | 1535 | 1041 |
Sequential (|i − j | = 1) | 527 | 357 |
Medium-range (|i − j | < 4) | 339 | 217 |
Long-range (|i – j | > 5) | 669 | 467 |
Intermolecular | 0 | 58 |
Hydrogen bonds (upper/lower) | 45/45 | 62/62 |
Total dihedral angle restraints | 199 | 214 |
ϕ | 81 | 83 |
ψ | 85 | 88 |
χ 1 | 33 | 43 |
Structure statistics | ||
Violations (mean and SD) | ||
Distance constraints (Å) | 0.0082 ± 0.001 | 0.0042 ± 0.0008 |
Dihedral angle constraints (°) | 1.052 ± 0.026 | 1.14 ± 0.015 |
Max. dihedral angle violation (°) | 8.89 | 11.64 |
Max. distance violation (Å) | 0.32 | 0.14 |
Average pairwise r.m.s. deviation (Å), elements of secondary structure a | ||
Heavy atoms | 0.52 ± 0.05 | 0.79 ± 0.07 |
Backbone atoms | 0.13 ± 0.02 | 0.38 ± 0.07 |
Ramachandran analysis (pdbsum) | ||
most favored regions | 75.3% | 74.2% |
additional allowed regions | 23.7% | 25.8% |
generously allowed regions | 1.1% | 0% |
disallowed regions | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lushpa, V.A.; Baleeva, N.S.; Goncharuk, S.A.; Goncharuk, M.V.; Arseniev, A.S.; Baranov, M.S.; Mineev, K.S. Spatial Structure of NanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2. Int. J. Mol. Sci. 2022, 23, 11361. https://doi.org/10.3390/ijms231911361
Lushpa VA, Baleeva NS, Goncharuk SA, Goncharuk MV, Arseniev AS, Baranov MS, Mineev KS. Spatial Structure of NanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2. International Journal of Molecular Sciences. 2022; 23(19):11361. https://doi.org/10.3390/ijms231911361
Chicago/Turabian StyleLushpa, Vladislav A., Nadezhda S. Baleeva, Sergey A. Goncharuk, Marina V. Goncharuk, Alexander S. Arseniev, Mikhail S. Baranov, and Konstantin S. Mineev. 2022. "Spatial Structure of NanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2" International Journal of Molecular Sciences 23, no. 19: 11361. https://doi.org/10.3390/ijms231911361
APA StyleLushpa, V. A., Baleeva, N. S., Goncharuk, S. A., Goncharuk, M. V., Arseniev, A. S., Baranov, M. S., & Mineev, K. S. (2022). Spatial Structure of NanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2. International Journal of Molecular Sciences, 23(19), 11361. https://doi.org/10.3390/ijms231911361