Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Activity
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Catalyst Preparation
4.3. Catalyst Characterization
4.4. Catalyst Performance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Xue, Z.; Liu, Q.; Wang, J.; Mu, T. Valorization of levulinic acid over non-noble metal catalysts: Challenges and opportunities. Green Chem. 2018, 20, 4391–4408. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.V.; Bukhtiyarova, G.A. Reductive amination of levulinic acid or its derivatives to pyrrolidones over heterogeneous catalysts in the batch and continuous flow reactors: A review. Renew. Sustain. Energy Rev. 2021, 143, 110876. [Google Scholar] [CrossRef]
- Moreno-Marrodan, C.; Liguori, F.; Barbaro, P. Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Mol. Catal. 2019, 466, 60–69. [Google Scholar] [CrossRef]
- He, J.; Chen, L.; Liu, S.; Song, K.; Yang, S.; Riisager, A. Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chem. 2020, 22, 6714–6747. [Google Scholar] [CrossRef]
- Sajid, M.; Farooq, U.; Bary, G.; Azime, M.M.; Zhao, X. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects. Green Chem. 2021, 23, 9198–9238. [Google Scholar] [CrossRef]
- Démolis, A.; Essayem, N.; Rataboul, F. Synthesis and Applications of Alkyl Levulinates. ACS Sustain. Chem. Eng. 2014, 2, 1338–1352. [Google Scholar] [CrossRef]
- Wu, G.; Shen, C.; Liu, S.; Huang, Y.; Zhang, S.; Zhang, H. Research progress on the preparation and application of biomass derived methyl levulinate. Green Chem. 2021, 23, 9254–9282. [Google Scholar] [CrossRef]
- Raspolli Galletti, A.M.; Antonetti, C.; Fulignati, S.; Licursi, D. Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts 2020, 10, 1221. [Google Scholar] [CrossRef]
- Vidal, J.D.; Climent, M.J.; Concepcion, P.; Corma, A.; Iborra, S.; Sabater, M.J. Chemicals from biomass: Chemoselective reductive amination of ethyl levulinate with amines. ACS Catal. 2015, 5, 5812–5821. [Google Scholar] [CrossRef]
- Vidal, J.D.; Climent, M.J.; Corma, A.; Concepcion, P.; Iborra, S. One-pot selective catalytic synthesis of pyrrolidone derivatives from ethyl levulinate and nitro compounds. ChemSusChem 2017, 10, 119–128. [Google Scholar] [CrossRef]
- Touchy, A.S.; Hakim Siddiki, S.M.A.; Kon, K.; Shimizu, K.I. Heterogeneous Pt catalysts for reductive amination of levulinic acid to pyrrolidones. ACS Catal. 2014, 4, 3045–3050. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Wang, H.; Zhang, F.; Li, R.; Xiang, J.; Wang, Z.; Han, B.; Liu, Z. Ambient reductive synthesis of N-heterocyclic compounds over cellulose-derived carbon supported Pt nanocatalyst under H2 atmosphere. Green Chem. 2020, 22, 3820–3826. [Google Scholar] [CrossRef]
- Barbaro, P.; Liguori, F.; Oldani, C.; Moreno-Marrodán, C. Sustainable catalytic synthesis for a bio-based alternative to the reach-restricted N-methyl-2-pyrrolidone. Adv. Sustain. Syst. 2020, 4, 1900117. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, B.; Wang, L.; Yi, X.; Wang, C.; Wang, G.; Dai, Z.; Xiao, F.S. Zirconium oxide supported palladium nanoparticles as a highly efficient catalyst in the hydrogenation–amination of levulinic acid to pyrrolidones. ChemCatChem 2017, 9, 2661–2667. [Google Scholar] [CrossRef]
- Xie, C.; Song, J.; Wu, H.; Hu, Y.; Liu, H.; Zhang, Z.; Zhang, P.; Chen, B.; Han, B. Ambient reductive amination of levulinic acid to pyrrolidones over Pt nanocatalysts on porous TiO2 nanosheets. J. Am. Chem. Soc. 2019, 141, 4002–4009. [Google Scholar] [CrossRef] [PubMed]
- Muzzio, M.; Yu, C.; Lin, H.; Yom, T.; Boga, D.A.; Xi, Z.; Li, N.; Yin, Z.; Li, J.; Dunn, J.A.; et al. Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chem. 2019, 21, 1895–1899. [Google Scholar] [CrossRef]
- Bellè, A.; Tabanelli, T.; Fiorani, G.; Perosa, A.; Cavani, F.; Selva, M. A multiphase protocol for selective hydrogenation and reductive amination of levulinic acid with integrated catalyst recovery. ChemSusChem 2019, 12, 3343–3354. [Google Scholar] [CrossRef]
- Chaudhari, C.; Shiraishi, M.; Nishida, Y.; Sato, K.; Nagaoka, K. One-pot synthesis of pyrrolidones from levulinic acid and amines/nitroarenes/nitriles over the Ir-PVP catalyst. Green Chem. 2020, 22, 7760–7764. [Google Scholar] [CrossRef]
- Rodriguez-Padron, D.; Puente-Santiago, A.R.; Balu, A.M.; Romero, A.A.; Munoz-Batista, M.J.; Luque, R. Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustain. Chem. Eng. 2018, 6, 16637–16644. [Google Scholar] [CrossRef]
- Gao, G.; Sun, P.; Li, Y.Q.; Wang, F.; Zhao, Z.; Qin, Y.; Li, F. Highly stable porous-carbon-coated Ni catalysts for the reductive amination of levulinic acid via an unconventional pathway. ACS Catal. 2017, 7, 4927–4935. [Google Scholar] [CrossRef]
- Cao, P.; Ma, T.; Zhang, H.-Y.; Yin, G.; Zhao, J.; Zhang, Y. Conversion of levulinic acid to N-substituted pyrrolidinones over a nonnoble bimetallic catalyst Cu15Pr3/Al2O3. Catal. Commun. 2018, 116, 85–90. [Google Scholar] [CrossRef]
- Chieffi, G.; Braun, M.; Esposito, D. Continuous reductive amination of biomass-derived molecules over carbonized filter paper-supported FeNi alloy. ChemSusChem 2015, 8, 3590–3594. [Google Scholar] [CrossRef] [Green Version]
- Defilippi, C.; Rodríguez-Padrón, D.; Luque, R.; Giordano, C. Simplifying levulinic acid conversion towards a sustainable biomass valorization. Green Chem. 2020, 22, 2929–2934. [Google Scholar] [CrossRef]
- Wang, Y.; Nuzhdin, A.L.; Shamanaev, I.V.; Bukhtiyarova, G.A. Flow synthesis of N-alkyl-5-methyl-2-pyrrolidones over Ni2P/SiO2 catalyst. Mol. Catal. 2021, 515, 111884. [Google Scholar] [CrossRef]
- Boosa, V.; Varimalla, S.; Dumpalapally, M.; Gutta, N.; Velisoju, V.K.; Nama, N.; Akula, V. Influence of Brønsted acid sites on chemoselective synthesis of pyrrolidones over H-ZSM-5 supported copper catalyst. Appl. Catal. B Environ. 2021, 292, 120177. [Google Scholar] [CrossRef]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Prins, R.; Bussell, M.E. Metal Phosphides: Preparation, characterization and catalytic reactivity. Catal. Lett. 2012, 142, 1413–1436. [Google Scholar] [CrossRef]
- Golubeva, M.A.; Zakharyan, E.M.; Maximov, A.L. Transition metal phosphides (Ni, Co, Mo, W) for hydrodeoxygenation of biorefinery products (a review). Pet. Chem. 2020, 60, 1109–1128. [Google Scholar] [CrossRef]
- Shamanaev, I.V.; Deliy, I.V.; Aleksandrov, P.V.; Gerasimov, E.Y.; Pakharukova, V.P.; Kodenev, E.G.; Ayupov, A.B.; Andreev, A.S.; Lapina, O.B.; Bukhtiyarova, G.A. Effect of precursor on the catalytic properties of Ni2P/SiO2 in methyl palmitate hydrodeoxygenation. RSC Adv. 2016, 6, 30372–30383. [Google Scholar] [CrossRef]
- Deliy, I.V.; Shamanaev, I.V.; Aleksandrov, P.V.; Gerasimov, E.Y.; Pakharukova, V.P.; Kodenev, E.G.; Yakovlev, I.V.; Lapina, O.B.; Bukhtiyarova, G.A. Support Effect on the Performance of Ni2P Catalysts in the Hydrodeoxygenation of Methyl Palmitate. Catalysts 2018, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Deliy, I.V.; Shamanaev, I.V.; Gerasimov, E.Y.; Pakharukova, V.P.; Yakovlev, I.V.; Lapina, O.B.; Aleksandrov, P.V.; Bukhtiyarova, G.A. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect. Catalysts 2017, 7, 298. [Google Scholar] [CrossRef]
- Chen, J.; Shi, H.; Li, L.; Li, K. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Appl. Catal. B Environ. 2014, 144, 870–884. [Google Scholar] [CrossRef]
- Sawhill, S.J.; Layman, K.A.; Van Wyk, D.R.; Engelhard, M.H.; Wang, C.; Bussell, M.E.; Vanwyk, D. Thiophene hydrodesulfurization over nickel phosphide catalysts: Effect of the precursor composition and support. J. Catal. 2005, 231, 300–313. [Google Scholar] [CrossRef]
- Shamanaev, I.V.; Deliy, I.V.; Gerasimov, E.Y.; Pakharukova, V.P.; Kodenev, E.G.; Aleksandrov, P.V.; Bukhtiyarova, G.A. Synergetic effect of Ni2P/SiO2 and γ-Al2O3 physical mixture in hydrodeoxygenation of methyl palmitate. Catalysts 2017, 7, 329. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, B.; Liu, F.; Wang, Y.; Lan, X.; Wang, S.; Ali, B.; Wang, T. Transfer hydrogenation of cinnamaldehyde catalyzed by Al2O3 using ethanol as a solvent and hydrogen donor. ACS Sustain. Chem. Eng. 2020, 8, 8195–8205. [Google Scholar] [CrossRef]
- Hanson, B.E.; Wieserman, L.F.; Wagner, G.W.; Kaufman, R.A. Identification of acetone enolate on γ-alumina: Implications for the oligomerization and polymerization of adsorbed acetone. Langmuir 1987, 3, 549–555. [Google Scholar] [CrossRef]
- Prins, R. Hydrogen Spillover. Facts and Fiction. Chem. Rev. 2012, 112, 2714–2738. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Tred 1, °C | Ni, wt% | P, wt% | SBET, m2 g–1 | DTEM, nm | NH3-TPD, μmol g–1 |
---|---|---|---|---|---|---|
Ni2P/SiO2_A500 | 500 | 6.2 | 5.0 | 153 | n.d. 2 | n.d. |
Ni2P/SiO2_A550 | 550 | 6.3 | 4.3 | 157 | n.d. | n.d. |
Ni2P/SiO2_A600 | 600 | 6.3 | 3.8 | 161 | 8.9 | 368 |
Ni2P/SiO2_I450 | 450 | 6.8 | 6.5 | 134 | 1.8 | 420 |
Ni2P/SiO2_I500 | 500 | 6.9 | 6.4 | 139 | 3.0 | 362 |
Ni2P/SiO2_I550 | 550 | 7.0 | 6.1 | 154 | 3.2 | 152 |
Ni2P/Al2O3_550 | 550 | 7.3 | 11.6 | 115 | 2.8 | 477 |
Ni2P/Al2O3_600 | 600 | 7.3 | 11.3 | 120 | 3.1 | 354 |
Ni/Al2O3 | 400 | 6.9 | – | 201 | 2–10 | n.d. |
Ni/SiO2 | 400 | 6.8 | – | 269 | 5–50 | n.d. |
Entry | Catalyst | T, °C | Conversion of EL, % | Selectivity, % | Yield, % | ||
---|---|---|---|---|---|---|---|
GVL | UHPs | HMP | |||||
1 | Ni2P/SiO2_A600 | 170 | 98 | 4 | <0.5 | 96 | 94 |
2 | Ni2P/SiO2_A550 | 170 | 95 | 2 | 1 | 97 | 92 |
3 | Ni2P/SiO2_A500 | 170 | 90 | 0 | 27 | 73 | 66 |
4 | Ni2P/SiO2_A500 | 180 | 95 | 2 | 14 | 84 | 80 |
5 | Ni2P/SiO2_I450 | 170 | 85 | 1 | 4 | 95 | 81 |
6 | Ni2P/SiO2_I450 | 180 | 93 | 1 | 2 | 97 | 90 |
7 2 | Ni2P/SiO2_I450 | 180 | 96 | 3 | 0 | 97 | 93 |
8 | Ni2P/SiO2_I500 | 170 | 91 | 2 | 1 | 97 | 88 |
9 | Ni2P/SiO2_I500 | 180 | 95 | 6 | <1 | 93 | 88 |
10 | Ni2P/SiO2_I550 | 170 | 92 | 3 | <0.5 | 96 | 88 |
11 | Ni2P/SiO2_I550 | 180 | 97 | 13 | <0.5 | 87 | 84 |
12 | Ni2P/Al2O3_550 | 170 | 98 | 10 3 | 0 | 87 | 85 |
13 | Ni2P/Al2O3_550 | 160 | 95 | 9 3 | <0.5 | 87 | 83 |
14 | Ni2P/Al2O3_600 | 160 | 99 | 7 3 | 0 | 88 | 87 |
15 | Ni/Al2O3 | 150 | 100 | 28 3 | 0 | 50 | 50 |
16 | Ni/SiO2 | 170 | 97 | 13 | <1 | 86 | 83 |
17 4 | Ni2P/SiO2_A600 | 170 | >99.5 | 2 | 0 | 98 | 98 |
Entry | Diluter (weight) | T, °C | Conversion of EL, % | Selectivity, % | Yield, % | ||
---|---|---|---|---|---|---|---|
GVL | UHPs | HMP | |||||
1 | without | 170 | 98 | 4 | <0.5 | 96 | 94 |
2 | γ-Al2O3 (0.75 g) | 170 | 100 | 6 | 0 | 94 | 94 |
3 | γ-Al2O3 (0.75 g) | 150 | 97 | 6 | <0.5 | 94 | 91 |
4 | SAPO-11 (0.25 g) | 170 | 97 | 5 | 0 | 95 | 92 |
5 | SAPO-11 (0.75 g) | 170 | 98 | 6 | 0 | 94 | 92 |
6 | zeolite β (0.25 g) | 170 | 99 | 6 | 0 | 94 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Nuzhdin, A.L.; Shamanaev, I.V.; Kodenev, E.G.; Gerasimov, E.Y.; Bukhtiyarova, M.V.; Bukhtiyarova, G.A. Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate. Int. J. Mol. Sci. 2022, 23, 1106. https://doi.org/10.3390/ijms23031106
Wang Y, Nuzhdin AL, Shamanaev IV, Kodenev EG, Gerasimov EY, Bukhtiyarova MV, Bukhtiyarova GA. Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate. International Journal of Molecular Sciences. 2022; 23(3):1106. https://doi.org/10.3390/ijms23031106
Chicago/Turabian StyleWang, Yazhou, Alexey L. Nuzhdin, Ivan V. Shamanaev, Evgeny G. Kodenev, Evgeny Yu. Gerasimov, Marina V. Bukhtiyarova, and Galina A. Bukhtiyarova. 2022. "Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate" International Journal of Molecular Sciences 23, no. 3: 1106. https://doi.org/10.3390/ijms23031106
APA StyleWang, Y., Nuzhdin, A. L., Shamanaev, I. V., Kodenev, E. G., Gerasimov, E. Y., Bukhtiyarova, M. V., & Bukhtiyarova, G. A. (2022). Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate. International Journal of Molecular Sciences, 23(3), 1106. https://doi.org/10.3390/ijms23031106