Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Fenbufen Complex Stability Constants
2.2. Fenoprofen Complex Stability Constants
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Solutions
4.3. Circular Dichroism (CD) Measurements
4.4. Nuclear Magnetic Resonance (NMR) Measurements
4.5. Mathematical Equations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Hedges, A.R. Industrial applications of cyclodextrins. Chem. Rev. 1998, 98, 2035–2044. [Google Scholar] [CrossRef]
- Szejtli, J. Past, present and future of cyclodextrin research. Pure Appl. Chem. 2004, 76, 1825–1845. [Google Scholar] [CrossRef]
- Crini, G. Review: A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Dodziuk, H. Cyclodextines and Their Complexes: Chemistry, Analytical Methods, Applications; Wiley Verlag GmbH& Co. KGaA: Weinheim, Germany, 2016; ISBN 13:978-3-527-31280-1. [Google Scholar]
- Marugan, J.; McKew, C.J.; Austin, P.C.; Porter, D.F.; Silber, A.S.; Ory, S.D.; Walkley, U.S.; H.Vite, C.; Heiss, J.; Pavan, J.W.; et al. Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr. Top. Med. Chem. 2014, 14, 330–339. [Google Scholar] [CrossRef]
- Miranda, G.M.; Santos, V.O.; Bessa, J.R.; Teles, Y.C.F.; Yahouédéhou, S.C.; Goncalves, M.S.; Ribeiro-Filho, J. Inclusion complexes of non-steroidal anti-inflammatory drugs with cyclodextrins: A systematic review. Biomolecules 2021, 11, 361. [Google Scholar] [CrossRef]
- Bui, C.V.; Rosenau, T.; Hettegger, H. Polysaccharide- and β-cyclodextrin-based chiral selectors for enantiomer resolution: Recent developments and applications. Molecules 2021, 26, 4322. [Google Scholar] [CrossRef]
- Choi, H.; Oh, Y.H.; Park, S.; Lee, S.S.; Oh, H.B.; Lee, S. Unveiling host–guest–solvent interactions in solution by identifying highly unstable host–guest configurations in thermal non-equilibrium gas phase. Sci. Rep. 2022, 12, 8169. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Scriba, G.K.E. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC Trends Anal. Chem. 2023, 160, 116987. [Google Scholar] [CrossRef]
- Li, Z.; Couzijn, E.P.A.; Zhang, X. Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: An experimental and theoretical study. J. Phys. Chem. B 2012, 116, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Lee, J.-u.; Oh, J.H.; Park, S.; Hong, Y.; Min, B.K.; Lee, H.H.L.; Kim, H.I.; Kong, X.; Lee, S.; et al. Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: Infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Phys. Chem. Chem. Phys. 2018, 20, 30428–30436. [Google Scholar] [CrossRef] [PubMed]
- Szente, L.; Szemán, J. Cyclodextrins in analytical chemistry: Host-guest type molecular recognition. Anal. Chem. 2013, 85, 8024–8030. [Google Scholar] [CrossRef] [PubMed]
- Balzano, F.; Uccello-Barretta, G.; Sicoli, G.; Vanni, L.; Recchimurzo, A.; Aiello, F. Chiral Discrimination Mechanisms by Silylated-Acetylated Cyclodextrins: Superficial Interactions vs. Inclusion. Int. J. Mol. Sci. 2022, 23, 13169. [Google Scholar] [CrossRef] [PubMed]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Guo, C.; Xiao, Y. Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydr. Polym. 2021, 256, 117517. [Google Scholar] [CrossRef] [PubMed]
- Kalydi, E.; Malanga, M.; Ujj, D.; Benkovics, G.; Szakács, Z.; Béni, S. Fully symmetric cyclodextrin polycarboxylates: How to determine reliable protonation constants from NMR titration data. Int. J. Mol. Sci. 2022, 23, 14448. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Zhang, X.; Tian, B.R. Selective modifications at the different positions of cyclodextrins: A review of strategies. Turk. J. Chem. 2020, 44, 261–278. [Google Scholar] [CrossRef]
- Řezanka, M. Synthesis of substituted cyclodextrins. Environ. Chem. Lett. 2019, 17, 49–63. [Google Scholar] [CrossRef]
- Szente, L.; Szemán, J.; Sohajda, T. Analytical characterization of cyclodextrins: History, official methods and recommended new techniques. J. Pharm. Biomed. Anal. 2016, 130, 347–365. [Google Scholar] [CrossRef]
- Kiss, E.; Szabó, V.A.; Horváth, P. Simple circular dichroism method for selection of the optimal cyclodextrin for drug complexation. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 223–233. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Crego, A.L.; Marina, M.L.; García-Ruiz, C. Enantioselective separation of azole compounds by EKC. Reversal of migration order of enantiomers with CD concentration. Electrophoresis 2007, 28, 2667–2674. [Google Scholar] [CrossRef]
- Van Doorne, H.; Bosch, E.H.; Lerk, C.F. Formation arid antimicrobial activity of complexes of β-cyclodextrin and some antimycotic imidazole derivatives. Pharm. Weekbl. 1988, 10, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Penn, S.G.; Bergstrom, E.T.; Goodall, D.M.; Loran, J.S. Capillary electrophoresis with chiral selectors: Optimization of separation and determination of thermodynamic parameters for binding of tioconazole enantiomers to cyclodextrins. Anal. Chem. 1994, 66, 2866–2873. [Google Scholar] [CrossRef]
- Kelemen, H.; Csillag, A.; Hancu, G.; Székely-Szentmiklósi, B.; Fülöp, I.; Varga, E.; Grama, L.; Orgován, G. Characterisation of inclusion complexes between bifonazole and different cyclodextrins in solid and solution state. Maced. J. Chem. Chem. Eng. 2017, 36, 81–91. [Google Scholar] [CrossRef]
- Mohammed, N.N.; Pandey, P.; Khan, N.S.; Elokely, K.M.; Liu, H.; Doerksen, R.J.; Repka, M.A. Clotrimazole–cyclodextrin based approach for the management and treatment of candidiasis—A formulation and chemistry-based evaluation. Pharm. Dev. Technol. 2016, 21, 619–629. [Google Scholar] [CrossRef]
- Tenjarla, S.; Puranajoti, P.; Kasina, R.; Mandal, T. Preparation, characterization, and evaluation of miconazole-cyclodextrin complexes for improved oral and topical delivery. J. Pharm. Sci. 1998, 87, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Bratu, I.; Gavira-Vallejo, J.M.; Hernanz, A.; Bogdan, M.; Bora, G. Inclusion complex of fenbufen with β-cyclodextrin. Biopolymers 2004, 73, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, H.; Jin, W.; Ding, L. Determination of dissociation constants of cyclodextrin—Ligand inclusion complexes by electrospray ionization mass spectrometry. Eur. J. Mass Spectrom. 2006, 12, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Sortino, S.; Giuffrida, S.; Fazio, S.; Monti, S. Spectroscopic characterization and photochemical behavior of host–guest complexes between β-cyclodextrin and drugs containing a biphenyl-like chromophore. New J. Chem. 2001, 25, 707–713. [Google Scholar] [CrossRef]
- Uccello-Barretta, G.; Chiavacci, C.; Bertucci, C.; Salvadori, P. Stereochemistry and dynamics of the inclusion complex of (S)-(+)-fenoprofen with cyclomaltoheptaose (beta-cyclodextrin). Carbohydr. Res. 1993, 243, 1–10. [Google Scholar] [CrossRef]
- Kavetsou, E.; Tsoukalas-Koulas, C.; Katopodi, A.; Kalospyros, A.; Alexandratou, E.; Detsi, A. Ιnclusion complexes of magnesium phthalocyanine with cyclodextrins as potential photosensitizing agents. Bioengineering 2023, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Higashi, K.; Moribe, K. Amorphous drug solubility and maximum free drug concentrations in cyclodextrin solutions: A quantitative study using NMR diffusometry. Mol. Pharm. 2021, 18, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
- Udo, H.; Brinker, D.K. Circular dichroism of cyclodextrin complexes. In Cyclodextrins and Their Complexes; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2006. [Google Scholar]
- Gawroński, J.; Grajewski, J. The significance of induced circular dichroism. Org. Lett. 2003, 5, 3301–3303. [Google Scholar] [CrossRef]
- Harata, K.; Uedaira, H. The Circular Dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 1975, 48, 375–378. [Google Scholar] [CrossRef]
- Kajtár, M.; Horváth-Toró, C.; Kuthi, É.; Szejtli, J. A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes. In Proceedings of the First International Symposium on Cyclodextrins; Szejtli, J., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 1982; pp. 181–193. [Google Scholar]
- Kodaka, M. Application of a general rule to induced circular dichroism of naphthalene derivatives complexed with cyclodextrins. J. Phys. Chem. A 1998, 102, 8101–8103. [Google Scholar] [CrossRef]
- Sohajda, T.; Hu, W.H.; Zeng, L.L.; Li, H.; Szente, L.; Noszál, B.; Béni, S. Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy. Electrophoresis 2011, 32, 2648–2654. [Google Scholar] [CrossRef] [PubMed]
- Tűz, B.; Noszál, B.; Hosztafi, S.; Mazák, K. β-cyclodextrin complex formation and protonation equilibria of morphine and other opioid compounds of therapeutic interest. Eur. J. Pharm. Sci. 2022, 171, 106120. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 22 April 2022).
CyD/Guest Compound | logK Determined by CD [14] | logK from Literature |
---|---|---|
BCyD/ | ||
Bifonazole | 3.40 | 3.40–3.52 (CE) [23] |
Clotrimazole | 2.65 | 2.66 (PS) [24] |
DIMEB/ | ||
Tioconazole | 3.86 | 3.84 (CE) [25] |
HPBCyD/ | ||
Bifonazole | 4.46 | 3.66 (NMR) [26] |
Clotrimazole | 2.09 | 2.65 (PS) [27] |
Miconazole | 2.71 | 2.56 (PS) [28], 2.41 (PS) [29] |
Tioconazole | 3.30 | 2.86 (CE) [25] |
SBEBCyD/ | ||
Bifonazole | 4.72 | 3.94 (NMR) [26] |
Cyclodextrin | logKCD | logKNMR | Diff. |
---|---|---|---|
BCyD (H2O) 1 | 3.35 ± 0.03 | NA | NA |
BCyD | 3.34 ± 0.02 | 3.24 ± 0.06 | 0.10 |
CRYSMEB | 3.39 ± 0.08 | 3.33 ± 0.05 | 0.06 |
DIMEB50 | 3.56 ± 0.12 | 3.62 ± 0.07 | −0.06 |
DIMEB80 | 4.12 ± 0.28 | 4.00 ± 0.14 | 0.12 |
DIMEB95 | 4.06 ± 0.07 | 3.95 ± 0.10 | 0.10 |
RAMEB | 3.59 ± 0.08 | 3.47 ± 0.02 | 0.12 |
HPBCyD(4.5) | 3.39 ± 0.04 | 3.53 ± 0.06 | −0.14 |
HPBCyD(6.3) | 3.53 ± 0.04 | 3.61 ± 0.06 | −0.08 |
Cyclodextrin | H1,1′ | H2,2′ | H3,3′ | H4,4′ | H5 |
---|---|---|---|---|---|
BCyD | NA | 3.41 | 3.30 | 2.95 | 2.70 |
−0.179 | −0.273 | −0.128 | −0.095 | ||
CRYSMEB | NA | 3.31 | 3.37 | 3.19 | 3.23 |
−0.185 | −0.185 | 0.029 | 0.070 | ||
DIMEB50 | NA | 3.83 | 3.94 | 4.28 | 3.42 |
−0.201 | −0.189 | 0.034 | 0.109 | ||
DIMEB80 | NA | 4.09 | 4.06 | 3.81 | 3.55 |
−0.207 | −0.200 | 0.026 | 0.100 | ||
DIMEB95 | NA | 4.08 | 4.17 | 4.78 | 3.58 |
−0.220 | −0.208 | 0.014 | 0.090 | ||
RAMEB | NA | 3.68 | 3.70 | 3.09 | 2.97 |
−0.176 | −0.183 | 0.041 | 0.095 | ||
HPBCyD(4.5) | 2.93 | 3.62 | 3.59 | NA | 3.09 |
0.036 | −0.134 | −0.168 | 0.065 | ||
HPBCyD(6.3) | 3.10 | 3.71 | 3.67 | NA | 3.19 |
0.044 | −0.132 | −0.167 | 0.069 |
Cyclodextrin | logKCD | logKNMR | Diff. |
---|---|---|---|
BCyD (H2O) 1 | 3.12 ± 0.02 | NA | NA |
BCyD | 3.06 ± 0.05 | 2.98 ± 0.04 | 0.08 |
CRYSMEB | 3.10 ± 0.02 | 3.05 ± 0.01 | 0.05 |
DIMEB50 | 3.10 ± 0.08 | 3.13 ± 0.02 | −0.03 |
DIMEB80 | 3.33 ± 0.09 | 3.36 ± 0.01 | −0.03 |
DIMEB95 | 3.32 ± 0.09 | 3.26 ± 0.01 | 0.06 |
RAMEB | 3.34 ± 0.07 | 3.15 ± 0.004 | 0.19 |
HPBCyD(4.5) | 3.18 ± 0.08 | 3.09 ± 0.01 | 0.09 |
HPBCyD(6.3) | 3.19 ± 0.05 | 3.14 ± 0.004 | 0.05 |
Cyclodextrin | H1 | H2 | H3 | H4 | H5,5′ | H6,6′ | H7 |
---|---|---|---|---|---|---|---|
BCyD | 3.17 | 2.99 | 2.99 | 2.98 | 2.99 | 3.02 | 2.96 |
0.026 | 0.068 | −0.040 | −0.390 | −0.179 | −0.008 | 0.043 | |
CRYSMEB | 3.10 | 3.09 | 3.02 | 3.05 | 3.05 | 3.38 | 3.11 |
−0.018 | 0.033 | −0.090 | −0.415 | −0.140 | 0.010 | 0.051 | |
DIMEB50 | 3.16 | 3.11 | 3.16 | 3.12 | 3.16 | 3.20 | 3.16 |
−0.076 | 0.088 | −0.126 | −0.556 | −0.123 | 0.032 | 0.094 | |
DIMEB80 | 3.46 | 3.25 | 3.43 | 3.35 | 3.41 | 3.60 | 3.45 |
−0.076 | 0.071 | −0.112 | −0.519 | −0.139 | 0.018 | 0.082 | |
DIMEB95 | 3.39 | 3.19 | 3.31 | 3.29 | 3.39 | 3.53 | 3.40 |
−0.079 | 0.074 | −0.118 | −0.532 | −0.138 | 0.019 | 0.083 | |
RAMEB | 3.18 | 3.13 | 3.14 | 3.15 | 3.13 | 3.22 | 3.13 |
−0.040 | 0.064 | −0.136 | −0.510 | −0.072 | 0.068 | 0.109 | |
HPBCyD(4.5) | NA | 3.07 | 3.12 | 3.09 | 3.11 | 3.00 | 3.04 |
NA | 0.059 | −0.071 | −0.395 | −0.118 | 0.027 | 0.063 | |
HPBCyD(6.3) | 2.94 | 3.15 | 3.13 | 3.14 | 3.12 | 3.34 | 3.16 |
0.016 | 0.069 | −0.066 | −0.395 | −0.118 | 0.031 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraszni, M.; Ágh, F.; Horváth, D.; Mirzahosseini, A.; Horváth, P. Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy. Int. J. Mol. Sci. 2023, 24, 7544. https://doi.org/10.3390/ijms24087544
Kraszni M, Ágh F, Horváth D, Mirzahosseini A, Horváth P. Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy. International Journal of Molecular Sciences. 2023; 24(8):7544. https://doi.org/10.3390/ijms24087544
Chicago/Turabian StyleKraszni, Márta, Ferenc Ágh, Dániel Horváth, Arash Mirzahosseini, and Péter Horváth. 2023. "Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy" International Journal of Molecular Sciences 24, no. 8: 7544. https://doi.org/10.3390/ijms24087544
APA StyleKraszni, M., Ágh, F., Horváth, D., Mirzahosseini, A., & Horváth, P. (2023). Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy. International Journal of Molecular Sciences, 24(8), 7544. https://doi.org/10.3390/ijms24087544