Spatio-Temporal Distribution of Carabids Influenced by Small-Scale Admixture of Oak Trees in Pine Stands
Abstract
:1. Introduction
- Local climate conditions like temperature and precipitation significantly influence species-specific activity densities over the course of the year and the main period of activity (May to August) of the four Carabus species in pine-dominated forests.
- The spatial distribution patterns of Carabus species (interspecific) and sexes (intraspecific) are determined by the following spatial tree species effect zones: pure oak effect zone (Z1), mixed oak–pine effect zone (Z2) and pure pine effect zone (Z3).
- The combination of temporal (annual periods with high versus low activity densities) and spatial dimensions (small-scale tree species effect zones) leads to more detailed information about the species-specific use of environmental niches and helps to prove the derived assumptions of coexistence or intra- and interspecific competition of Carabus species [39,53].
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Measurements and Sample Design
2.4. Preparation of Spatial Data and Statistical Analyses
3. Results
3.1. Temporal Activities of Carabus Species Influenced by Temperature and Precipitation
3.2. Intraspecific Spatial Distribution Pattern of Carabids
3.3. Interspecific Spatial Distribution Patterns of Carabids
4. Discussion
4.1. Effects of Climate Conditions on the Temporal Activity of Carabids
4.2. Tree Species-Related Effect Zones Influence the Spatial Distribution of Carabids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kraus, D.; Krumm, F. (Eds.) Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; European Forest Institute: Freiburg, Germany, 2013. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Taboada, A.; Tárrega, R.; Calvo, L.; Marcos, E.; Marcos, J.A.; Salgado, J.M. Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity. Eur. J. For. Res. 2010, 129, 31–45. [Google Scholar] [CrossRef]
- Sobek, S.; Steffan-Dewenter, I.; Scherber, C.; Tscharntke, T. Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers. Distrib. 2009, 15, 660–670. [Google Scholar] [CrossRef]
- Guyot, V.; Castagneyrol, B.; Vialatte, A.; Deconchat, M.; Jactel, H. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 2016, 12, 20151037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viciana, V.; Svitok, M.; Michalková, E.; Lukáčik, I.; Stašiov, S. Influence of tree species and soil properties on ground beetle (Coleoptera: Carabidae) communities. Acta Oecol. 2018, 91, 120–126. [Google Scholar] [CrossRef]
- Löf, M.; Ammer, C.; Coll, L.; Drössler, L.; Huth, F.; Madsen, P.; Wagner, S. Regeneration Patterns in Mixed-Species Stands. In Dynamics, Silviculture and Management of Mixed Forest, 1st ed.; Bravo-Oviedo, A., Pretzsch, H., del Río, M., Eds.; Managing Forest Ecosystems 31; Springer: Cham, Switzerland, 2018; pp. 103–130. [Google Scholar] [CrossRef]
- Skłodowski, J.; Bajor, P.; Trynkos, M. Carabids benefit more from pine stands with added understory or second story of broad-leaved trees favored by climate change than from one-storied pine stands. Eur. J. For. Res. 2018, 137, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Knoke, T.; Ammer, C.; Stimm, B.; Mosandl, R. Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. Eur. J. For. Res. 2008, 127, 89–101. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. National Forest Inventories. Pathways for Common Reporting; Springer Science + Business Media B.V.: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2010. [Google Scholar]
- Ozanne, C.M.P.; Speight, M.R.; Hambler, C.; Evans, H.F. Isolated trees and forest patches: Patterns in canopy arthropod abundance and diversity in Pinus sylvestris (Scot Pine). For. Ecol. Manag. 2000, 137, 53–63. [Google Scholar] [CrossRef]
- Koch Widerberg, M.; Ranius, T.; Drobyshev, I.; Nilsson, U.; Lindbladh, M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 2012, 21, 3035–3059. [Google Scholar] [CrossRef]
- Pilskog, H.E.; Birkemoe, T.; Framstad, E.; Sverdrup-Thygeson, A. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks. J. Insect Sci. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Southwood, T.R.E. The Number of Species of Insect Associated with Various Trees. J. Appl. Ecol. 1961, 30, 1–8. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Bellamy, P.E.; Ellis, C.J.; Hewison, R.L.; Hodgetts, N.G.; Iason, G.R.; Littlewood, N.A.; Newey, S.; Stockan, J.A.; Taylor, A.F.S. OakEcol: A database of Oak-associated biodiversity within the UK. Data Brief 2019, 25, 104120. [Google Scholar] [CrossRef] [PubMed]
- Perot, T.; Picard, N. Mixture enhances productivity in a two-species forest: Evidence from a modeling approach. Ecol. Res. Ecol. Soc. Jpn. 2012, 27, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Steckel, M.; Heym, M.; Biber, P.; Ammer, C.; Ehbrecht, M.; Bielak, K.; Bravo, F.; Ordóñez, C.; Collet, C.; et al. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2020, 139, 349–367. [Google Scholar] [CrossRef] [Green Version]
- Kautz, G.; Topp, W. Nachhaltige waldbauliche Maßnahmen zur Verbesserung der Bodenqualität. Forstw. Cbl. 1998, 117, 23–43. [Google Scholar] [CrossRef]
- Rothe, A.; Binkley, D. Nutritional interactions in mixed species forests: A synthesis. Can. J. For. Res. 2001, 31, 1855–1870. [Google Scholar] [CrossRef]
- Schua, K.; Fischer, H.; Lehmann, B.; Wagner, S. Single tree effects of sessile oak (Quercus petraea (Matt.) Liebl.) within pure stands (Pinus sylvestris L.) on topsoil properties. Allg. Forst J. Ztg. 2007, 78, 172–179, (In German with English Abstract). [Google Scholar]
- Huth, F.; Wehnert, A.; Dobrovolný, L.; Wagner, S. Über Ursachen räumlicher Muster der Eichennaturverjüngung in Kiefernbeständen. Forstarchiv 2017, 88, 137. [Google Scholar]
- Moore, R.; Warrington, S.; Whittaker, J.B. Herbivory by Insects on Oak Trees in Pure Stands Compared with Paired Mixtures. J. Appl. Ecol. 1991, 28, 290–304. [Google Scholar] [CrossRef]
- Warren-Thomas, E.; Zou, Y.; Dong, L.; Yao, X.; Yang, M.; Zhang, X.; Qin, Y.; Liu, Y.; Sang, W.; Axmacher, J.C. Ground beetle assemblages in Beijing’s new mountain forests. For. Ecol. Manag. 2014, 334, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Chandler, K.R.; Chappell, N.A. Influence of individual oak (Quercus robur) trees on saturated hydraulic conductivity. For. Ecol. Manag. 2008, 256, 1222–1229. [Google Scholar] [CrossRef]
- Zinke, P.J. The Pattern of Influence of Individual Forest Trees on Soil Properties. Ecology 1962, 43, 130–133. [Google Scholar] [CrossRef]
- Wehnert, A.; Wagner, S. Niche partitioning in carabids: Single-tree admixtures matter. Insect Conserv. Divers. 2019, 12, 131–146. [Google Scholar] [CrossRef]
- Kaneko, N.; Salamanca, E.F. Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan. Ecol. Res. 1999, 14, 131–138. [Google Scholar] [CrossRef]
- Wagner, S.; Herrmann, I.; Huth, F. Tools familiar, impact unexpected: Silviculture and ecosystem services on a small forest scale. Allg. Forst J. Ztg. 2020, 190, 89–100. [Google Scholar]
- Wu, H.; Sharpe, P.J.H.; Walker, J.; Penridge, L.K. Ecological Field Theory: A spatial analysis of resource interference among plants. Ecol. Model. 1985, 29, 215–243. [Google Scholar] [CrossRef]
- De Vries, H.H. Size of habitat and presence of ground beetle species. In Carabid Beetles and Evolution; Desender, K., Dufrêne, M., Loreau, M., Luff, M.L., Maelfait, J.P., Eds.; Series Entomologica 51; Springer: Dordrecht, The Netherlands, 1994; pp. 253–259. [Google Scholar] [CrossRef]
- Jukes, M.R.; Peace, A.J.; Ferris, R. Carabid beetle communities associated with coniferous plantations in Britain: The influence of site, ground vegetation and stand structure. For. Ecol. Manag. 2001, 148, 271–286. [Google Scholar] [CrossRef]
- Liebhold, A.; Koenig, W.D.; Bjørnstad, O.N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 467–490. [Google Scholar] [CrossRef] [Green Version]
- Økland, R.H.; Rydgren, K.; Økland, T. Single-tree influence on understory vegetation in a Norwegian boreal spruce forest. Oikos 1999, 87, 488–498. Available online: https://www.jstor.org/stable/3546813 (accessed on 1 March 2014). [CrossRef]
- Saetre, P. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 1999, 22, 183–192. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Rossi, R.E.; Kemp, W.P. Geostatistics and geographic information systems in applied insect ecology. Annu. Rev. Entomol. 1993, 38, 303–327. [Google Scholar] [CrossRef]
- Kotze, D.J.; Brandmayr, P.; Casale, A.; Dauffy-Richard, E.; Dekoninck, W.; Koivula, M.J.; Lövei, G.L.; Mossakowski, D.; Noordijk, J.; Paarmann, W.; et al. Forty years of carabid beetle research in Europe—From taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 2011, 100, 55–148. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.E.; Gagné, S.A. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments. PeerJ 2018, 6, e4226. [Google Scholar] [CrossRef] [Green Version]
- Knapp, M.; Seidl, M.; Knappová, J.; Macek, M.; Saska, P. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Sci. Rep. 2019, 9, 8967. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.-U. Zoophysiology and Ecology. In Carabid Beetles in Their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977; Volume 10. [Google Scholar] [CrossRef]
- Allema, B.; Rossing, W.; van der Werf, W.; Bukovinszky, T.; Steingröver, E.; van Bruggen, A.; van Lenteren, J.; Booij, K. Model for integrating internal and external drivers for dispersal and distribution pattern in carabid beetles. Landsc. Manag. Funct. Biodivers. 2008, 34, 5–8. [Google Scholar]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Shibuya, S.; Kubota, K.; Ohsaea, M.; Kikvidze, Z. Assembly rules for ground beetle communities: What determines community structure, environmental factors or competition? Eur. J. Entomol. 2011, 108, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Grüm, L. Spatial Distribution of Males and Females of Carabus arcensis Hbst. in the Breeding Season. In The Role of Ground Beetles in Ecological and Environmental Studies; Stork, N.E., Ed.; Intercept Ltd.: Andover, MA, USA; Hampshire, UK, 1990; pp. 277–287. [Google Scholar]
- Elek, Z.; Drag, L.; Pokluda, P.; Čížek, L.; Bérces, S. Dispersal of individuals of the flightless grassland ground beetle, Carabus hungaricus (Coleoptera: Carabidae), in three populations and what they tell us about mobility estimates based on mark-recapture. Eur. J. Entomol. 2014, 111, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Skłodowski, J.J.W. Interspecific body size differentiation in Carabus assemblages in the Bialowieza Primeval Forest, Poland. In Proceedings of the 11th European Carabidologists’ Meeting, Aarhus, Denmark, 21–24 July 2003; Lövei, G.L., Toft, S., Eds.; Plant Production No. 114; DIAS Report. 2005; pp. 291–303. Available online: https://www.researchgate.net/publication/292357368_Interspecific_body_size_differentiation_in_Carabus_assemblages_in_the_Bialowieza_Primeval_Forest_Poland (accessed on 1 January 2005).
- Turin, H.; Penev, L.; Casale, A. The Genus Carabus in Europe. A Synthesis; Fauna Europaea Evertebrata No 2; Pensoft Publishers & European Invertebrates Survey: Sofia, Bulgaria; Moscow, Russia; Leiden, The Netherlands, 2003. [Google Scholar]
- Loreau, M. Determinants of the seasonal pattern in the niche structure of a forest carabid community. Pedobiologia 1988, 31, 75–87. [Google Scholar]
- Danks, H.V. Insect Life-Cycle Plymorphism. Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control; Series Entomologica; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994; Volume 52. [Google Scholar] [CrossRef]
- Saska, P.; van der Werf, W.; Hemerik, L.; Luff, M.L.; Hatten, T.D.; Honek, A. Temperature effects on pitfall catches of epigeal arthropods: A model and method for bias correction. J. Appl. Ecol. 2013, 50, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Den Boer, P.J. Exclusion, competition or coexistence? A question of testing the right hypotheses. Z. Zool. Syst. Evol. 1985, 23, 259–274. [Google Scholar] [CrossRef]
- Den Boer, P.J. Comment on the article “On testing temporal niche differentiation in carabid beetles” by M. Loreau. Oecologia 1989, 81, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M. On testing temporal niche differentiation in carabid beetles. Oecologia 1989, 81, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, J. Interspecific Competition in Ground-Beetle Assemblages (Carabidae): What have we Learned. Oikos 1993, 66, 325–335. Available online: https://www.jstor.org/stable/3544821 (accessed on 23 August 2018). [CrossRef]
- Giller, P.S. Community Structure and the Niche; Chapman and Hall: London, UK; New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Pulliam, H.R. On the relationship between niche and distribution. Ecol. Lett. 2000, 3, 349–361. [Google Scholar] [CrossRef]
- Hofmann, G.; Pommer, U. Potentielle Natürliche Vegetation von Brandenburg und Berlin mit Karte im Maßstab 1:200000; Eberswalder Forstliche Schriftenreihe XXIV; Hendrik Bäßler Verlag: Berlin, Germany, 2005. [Google Scholar]
- DWD. 2019. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/pressemitteilungen_archiv_2010_node.html (accessed on 8 July 2020).
- LFB and LFE. 2017. Available online: http://www.forstliche-umweltkontrolle-bb.de/r3_meteo.php (accessed on 6 November 2017).
- Schwarz, C.J.S.; Seber, G.A.F. Estimating Animal Abundance: Review III. Stat. Sci. 1999, 14, 427–456. Available online: http://www.jstor.com/stable/2676809 (accessed on 2 August 2020).
- Heydemann, B. Agrarökologische Problematik—Dargetan an Untersuchungen über die Tierwelt der Bodenoberfläche der Kulturfelder. Ph.D. Thesis, University of Kiel, Kiel, Germany, 1953. [Google Scholar]
- Grüm, L. Carabid fecundity as affected by extrinsic and intrinsic factors. Oecologia 1984, 65, 114–121. [Google Scholar] [CrossRef]
- Schowalter, T.D. Insect Ecology: An Ecosystem Approach, 2nd ed.; Elsevier: London, UK, 2006. [Google Scholar]
- Stork, N.E. The Role of Ground Beetles in Ecological and Environmental Studies; Intercept Ltd.: Andover, MA, USA; Hampshire, UK, 1990. [Google Scholar]
- Sota, T. Variation of Carabid Life Cycles along Climatic Gradients: An Adaptive Perspective for Life-History Evolution under Adverse Conditions. In Insect Life-Cycle Polymorphism: Theory, Evolution, and Ecological Consequences for Seasonality and Diapause Control; Danks, H.V., Ed.; Ser. Entomol. 52; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 91–112. [Google Scholar] [CrossRef]
- Skłodowski, J. Carabid beetle movements in a clear-cut area with retention groups of trees. In Back to the Roots and Back to the Future. Towards a New Synthesis amongst Taxonomic, Ecological and Biogeographical Approaches in Carabidology; Penev, L., Erwin, T., Assmann, T., Eds.; Pensoft Series Faunistica No 75; Pensoft Publisher: Sofia, Bulgaria; Moscow, Russia, 2008; pp. 451–467. [Google Scholar]
- Weber, P.; Bol, R.; Dixon, L.; Bardgett, R.D. Large old trees influence patterns of δ13C and δ15N in forests. Rapid Commun. Mass Spectrom. 2008, 22, 1627–1630. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Wehnert, A.; Wong, K.Y.; Stoyan, D. Discovering interaction between oaks and carabid beetles on a local scale by point pattern analysis. iForest 2016, 9, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.E. Model-Based Geostatistics the Easy Way. J. Stat. Softw. 2015, 63, 1–24. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Tiebel, K.; Leinemann, L.; Hosius, B.; Schlicht, R.; Frischbier, N.; Wagner, S. Seed dispersal capacity of Salix caprea L. assessed by seed trapping and parentage analysis. Eur. J. For. Res. 2019, 138, 495–511. [Google Scholar] [CrossRef]
- Robert, C.P. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis, 2nd ed.; Springer: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; Wiley: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Grüm, L. Minimum Populations of Carabid Beetles (Col., Carabidae). In Minimum Animal Populations. Ecological Studies; Remmert, H., Ed.; Analysis and Synthesis Volume 106; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1994; pp. 131–136. [Google Scholar] [CrossRef]
- Szujecki, A. Ecology of Forest Insects; Series Entomologica; Dr. W. Junk Publishers: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, UK, 1987; Volume 26. [Google Scholar] [CrossRef]
- Chapman, P.A.; Armstrong, G. Design and use of a time-sorting pitfall trap for predatory arthropods. Agric. Ecosyst. Environ. 1997, 65, 15–21. [Google Scholar] [CrossRef]
- Kádár, F.; Fazekas, J.P.; Sárospataki, M.; Lövei, G.L. Seasonal dynamics, age structure and reproduction of four Carabus species (Coleoptera: Carabidae) living in forested landscapes in Hungary. Acta Zool. Acad. Sci. Hung. 2015, 61, 57–72. [Google Scholar] [CrossRef]
- Elek, Z.; Howe, A.G.; Enggaard, M.K.; Lövei, G.L. Seasonal dynamics of common ground beetles (Coleoptera: Carabidae) along an urbanisation gradient near Sorø, Zealand, Denmark. Entomol. Fenn. 2017, 28, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Danks, H.V. Studying insect photoperiodism and rhythmicity: Components, approaches and lessons. Eur. J. Entomol. 2003, 100, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Rivas, G.B.S.; Bauzer, L.G.S.R.; Meireles-Filho, A.C.A. “The Environment is Everything That Isn’t Me”: Molecular Mechanisms and Evolutionary Dynamics of Insect Clocks in Variable Surroundings. Front. Physiol. 2016, 6, 400. [Google Scholar] [CrossRef] [Green Version]
- Dateandtime.info 2017. Available online: https://dateandtime.info/de/citysunrisesunset.php?id=2950159&month=12&year=2010 (accessed on 13 November 2017).
- Schmidt, G. Die Bedeutung des Wasserhaushaltes für das ökologische Verhalten der Caraben (Ins. Coleopt.). Z. Angew. Entomol. 1957, 40, 390–399. [Google Scholar] [CrossRef]
- Thiele, H.-U.; Weber, F. Tagesrhythmen der Aktivität bei Carabiden. Oecologia 1968, 1, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Brigić, A.; Starčević, M.; Hrašovec, B.; Elek, Z. Old forest edges may promote the distribution of forest species in carabid assemblages (Coleoptera: Carabidae) in Croatian forests. Eur. J. Entomol. 2014, 111, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Huruk, S.; Huruk, A.; Barševskis, A.; Wróbel, G.; Degórska, A. Carabidae (Coleoptera) selected natural environments in Puszcza Borecka. Ecol. Chem. Eng. A 2014, 21, 143–165. [Google Scholar] [CrossRef]
- Nève, G. Influence of temperature and humidity on the activity of three Carabus species. In Carabid Beetles and Evolution; Desender, K., Dufrêne, M., Loreau, M., Luff, M.L., Maelfait, J.P., Eds.; Series Entomologica 51; Springer: Dordrecht, The Netherlands, 1994; pp. 189–192. [Google Scholar] [CrossRef] [Green Version]
- Wachmann, E.; Platen, R.; Barndt, D. Laufkäfer Beobachtung- Lebensweise; Naturbuch Verlag: Augsburg, Germany, 1995. [Google Scholar]
- Thomas, C.F.G.; Parkinson, L.; Griffiths, G.J.K.; Fernandez Garcia, A.; Marshall, E.J.P. Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J. Appl. Ecol. 2001, 38, 100–116. [Google Scholar] [CrossRef]
- Yu, X.-D.; Luo, T.-H.; Zhou, H.-Z.; Yang, J. Distribution of Carabid Beetles (Coleoptera: Carabidae) across a Forest-Grassland Ecotone in Southwestern China. Environ. Entomol. 2007, 36, 348–355. [Google Scholar] [CrossRef]
- Skłodowski, J.; Szczeszek, J. Dead wood modifies mobility of ground beetles. Balt. J. Coleopterol. 2015, 5, 91–98. [Google Scholar]
- Ohsawa, M. The role of isolated old oak trees in maintaining beetle diversity within larch plantations in the central mountainous region of Japan. For. Ecol. Manag. 2007, 250, 215–226. [Google Scholar] [CrossRef]
- Kneitel, J.M.; Chase, J.M. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 2004, 7, 69–80. [Google Scholar] [CrossRef] [Green Version]
- GAC (Gesellschaft für Angewandte Carabidologie e. V.). Lebensraumpräferenzen der Laufkäfer Deutschlands—Wissensbassierter Katalog. Angew. Carab. Suppl. 2009, V, 45. [Google Scholar]
- Von Broen, B. Vergleichende Untersuchungen über die Laufkäferbesiedlung (Coleoptera, Carabidae) einiger norddeutscher Waldbestände und angrenzender Kahlschlagsflächen. Dtsch. Ent. Z. 1965, 12, 67–82. [Google Scholar] [CrossRef]
- Day, K.R.; Marshall, S.; Heaney, C. Association between Forest Type and Invertebrates: Ground Beetle Community Patterns in a Natural Oakwood and Juxtaposed Conifer Plantation. Forestry 1993, 66, 37–50. [Google Scholar] [CrossRef]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Tree 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Davi, H.; Baret, F.; Huc, R.; Dufrêne, E. Effect of thinning on LAI variance in heterogeneous forests. For. Ecol. Manag. 2008, 256, 890–899. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Bordán, Z. Carabids in an oak-hornbeam forest: Testing the edge effect hypothesis. Acta Biol. Debrecina 2002, 24, 55–72. [Google Scholar] [CrossRef]
- Tyler, G. Variability in colour, metallic lustre, and body size of Carabus arvensis Herbst, 1784 (Coleoptera: Carabidae) in relation to habitat properties. Entomol. Fenn. 2010, 21, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Möller, K. Gliederfüßer in Brandenburgs Kiefernforsten. AFZ DerWald 2001, 56, 698–702. [Google Scholar]
- Drees, D.; Huk, T. Sexual differences in locomotory activity of the ground beetle Carabus granulatus L. In Natural History and Applied Ecology of Carabid Beetles; Brandmayr, P., Lövei, G., Zetto Brandmayr, T., Casale, A., Vigna Taglianti, A., Eds.; Pensoft Publisher: Sofia, Bulgaria; Moscow, Russia, 2000; pp. 133–138. [Google Scholar]
- Szyszko, J.; Gryuntal, S.; Schwerk, A. Movement patterns of Carabus hortensis Linnaeus, 1758 (Coleoptera, Carabidae) in a pine and beech forest. Balt. J. Coleopterol. 2004, 4, 5–11. [Google Scholar]
- Varley, G.C.; Gradwell, G.R.; Hassel, M.P. Insect Population Ecology an Analytical Approach, 2nd ed.; Blackwell Scientific Publications: Oxford/London/Edinburgh, UK; Melbourne, Australia, 1975. [Google Scholar]
- Hutchinson, G.E. An Introduction to Population Ecology; Yale University Press: New Haven, CT, USA; London, UK, 1978. [Google Scholar]
- Simon, U.; Linsenmair, K.E. Arthropods in tropical oaks: Differences in their spatial distributions within tree crowns. Plant. Ecol. 2001, 153, 179–191. [Google Scholar] [CrossRef]
- Szyszko, J.; Gryuntal, S.; Schwerk, A. Differences in Locomotory Activity between Male and Female Carabus hortensis (Coleoptera: Carabidae) in a Pine Forest and a Beech Forest in Relation to Feeding State. Environ. Entomol. 2004, 33, 1442–1446. [Google Scholar] [CrossRef] [Green Version]
- Saetre, P.; Bååth, E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol. Biochem. 2000, 32, 909–917. [Google Scholar] [CrossRef]
- Southwood, T.R.E.; Kennedy, C.E.J. Trees as Islands. Oikos 1983, 41, 359–371. Available online: https://www.jstor.org/stable/3544094 (accessed on 16 August 2014). [CrossRef]
- Sota, T. Limitation of reproduction by feeding condition in a carabid beetle, Carabus yaconinus. Res. Popul. Ecol. 1985, 27, 171–184. [Google Scholar] [CrossRef]
- Müller, J.K. Period of adult emergence in carabid beetles: An adaptation for reducing competition? Acta Phytopath. Entom. Hung. 1987, 22, 409–415. [Google Scholar]
- Skłodowski, J. Survival of carabids after windthrow of pine forest depends on the presence of broken tree crowns. Scand. J. For. Res. 2020, 35, 10–19. [Google Scholar] [CrossRef]
- Krissl, W.; Müller, F. Zweckmäßige Dauermischungsformen und Mischungsregulierung. Österr. Forstztg. 1990, 3, 29–32. [Google Scholar]
- Castagneyrol, B.; Giffard, B.; Valdés-Correcher, E.; Hampe, A. Tree diversity effects on leaf insect damage on pedunculate oak: The role of landscape context and forest stratum. For. Ecol. Manag. 2019, 433, 287–294. [Google Scholar] [CrossRef]
Period | Temp. | Prec. Sum | C. coriaceus | C. violaceus | C. hortensis | C. arvensis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Activity Category) | (°C) | (mm) | f | m | i | f | m | i | f | m | i | f | m | i |
Aug 10 (hi) | 18.9 | 109 | 0.03 | 0.59 | 0.62 | 0.21 | 0.93 | 1.14 | 0.00 | 0.03 | 0.03 | 0.21 | 0.07 | 0.28 |
Sep 10 (hi) | 14.4 | 120 | 0.13 | 0.50 | 0.63 | 0.13 | 0.00 | 0.13 | 0.00 | 0.03 | 0.03 | 0.10 | 0.07 | 0.17 |
Oct 10 (lo) | 9.4 | 12 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 |
Nov 10 (lo) | 7.3 | 142 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mar 11 (lo) | 5.3 | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Apr 11 (lo) | 12.5 | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.03 | 0.40 | 0.27 | 0.67 |
May 11 (hi) | 14.8 | 13 | 0.03 | 0.00 | 0.03 | 0.03 | 0.03 | 0.07 | 0.19 | 0.19 | 0.39 | 0.77 | 0.94 | 1.71 |
Jun 11 (hi) | 19.0 | 20 | 0.00 | 0.00 | 0.00 | 0.43 | 0.57 | 1.00 | 0.13 | 0.00 | 0.13 | 0.80 | 0.87 | 1.67 |
Jul 11 (hi) | 17.8 | 155 | 0.65 | 0.32 | 0.97 | 0.68 | 1.00 | 1.67 | 0.00 | 0.00 | 0.00 | 0.61 | 0.61 | 1.23 |
Aug 11 (hi) | 19.0 | 52 | 0.36 | 1.00 | 1.36 | 0.77 | 1.16 | 1.94 | 0.00 | 0.19 | 0.19 | 0.23 | 0.10 | 0.32 |
Sep 11 (hi) | 16.6 | 69 | 0.17 | 0.53 | 0.70 | 0.00 | 0.00 | 0.00 | 0.13 | 0.13 | 0.27 | 0.03 | 0.00 | 0.03 |
Oct 11 (lo) | 11.3 | 54 | 0.16 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.03 | 0.00 | 0.03 |
Nov 11 (lo) | 6.0 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dec 11 (lo) | 5.5 | 59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Jan 12 (lo) | 3.7 | 80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Feb 12 (lo) | −0.5 | 33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mar 12 (lo) | 7.4 | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Apr 12 (lo) | 10.0 | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.03 | 0.27 | 0.27 | 0.53 |
May 12 (hi) | 15.6 | 22 | 0.13 | 0.00 | 0.13 | 0.23 | 0.07 | 0.30 | 0.07 | 0.13 | 0.20 | 0.83 | 0.73 | 1.57 |
mean (lo) | 7.1 | 41 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.06 | 0.05 | 0.11 |
mean (hi) | 17.0 | 70 | 0.19 | 0.37 | 0.56 | 0.31 | 0.47 | 0.78 | 0.07 | 0.09 | 0.16 | 0.45 | 0.42 | 0.87 |
mean (total) | 11.3 | 53 | 0.09 | 0.15 | 0.24 | 0.13 | 0.20 | 0.33 | 0.03 | 0.04 | 0.08 | 0.23 | 0.21 | 0.43 |
C. coriaceus 2010–2012 | C. coriaceus high activity | C. coriaceus low activity | |||||||||
interc | −1.035 *** | Z1:males | −0.482 | interc | −1.073 *** | Z1:males | −0.337 | interc | −4.331 *** | Z1:males | −2.539 |
Z1 | 1.035 . | Z2:males | −0.035 | Z1 | 0.890 | Z2:males | 0.121 | Z1 | 2.539 . | Z2:males | −1.716 |
Z2 | 0.155 | AIC | 704.2 | Z2 | −0.002 | AIC | 585.4 | Z2 | 1.716 | AIC | 213.2 |
males | 0.636 * | males | 0.674 * | males | −16.972 | ||||||
C. violaceus 2010–2012 | C. violaceus high activity | C. violaceus low activity | |||||||||
interc | −0.570 *** | Z1:males | −0.516 | interc | −0.570 *** | Z1:males | −0.516 | interc | −21.300 | Z1:males | −0.000 |
Z1 | −0.124 | Z2:males | −0.253 | Z1 | −0.124 | Z2:males | −0.219 | Z1 | −0.000 | Z2:males | −17.590 |
Z2 | 0.257 | AIC | 805.2 | Z2 | 0.223 | AIC | 710.0 | Z2 | 17.590 | AIC | 182.9 |
males | 0.515 * | males | 0.516 * | males | −0.000 | ||||||
C. hortensis 2010–2012 | C. hortensis high activity | C. hortensis low activity | |||||||||
interc | −2.539 *** | Z1:males | −1.735 | interc | −2.721 *** | Z1:males | −18.303 | interc | −4.331 *** | Z1:males | −16.818 |
Z1 | 1.440 | Z2:males | −0.667 | Z1 | 1.623 . | Z2:males | −0.693 | Z1 | −14.972 | Z2:males | −0.693 |
Z2 | 1.223 ** | AIC | 281.5 | Z2 | 1.310 * | AIC | 257.5 | Z2 | 0.617 | AIC | 67.7 |
males | 1.042 * | males | 1.099 * | males | 0.693 | ||||||
C. arvensis 2010–2012 | C. arvensis high activity | C. arvensis low activity | |||||||||
interc | −0.013 | Z1:males | −0.065 | interc | −0.204 | Z1:males | 0.176 | interc | −1.766 *** | Z1:males | −16.030 |
Z1 | −0.392 | Z2:males | 0.299 | Z1 | −0.490 | Z2:males | 0.242 | Z1 | −0.026 | Z2:males | 0.619 |
Z2 | 0.232 | AIC | 672.5 | Z2 | 0.274 | AIC | 627.5 | Z2 | −0.002 | AIC | 228.6 |
males | −0.223 | males | −0.176 | males | −0.486 |
C. coriaceus 2010–2012 | C. coriaceus high activity | C. coriaceus low activity | |||||||||
intercept | −1.146 | Z1:males | −0.548 | intercept | −1.252 | Z1:males | −0.387 | intercept | −4.538 | Z1:males | −2.886 |
Z1 | 0.832 | Z2:males | −0.040 | Z1 | 0.607 | Z2:males | 0.117 | Z1 | 2.497 | Z2:males | −0.206 |
Z2 | 0.133 | range | 13.675 | Z2 | −0.015 | range | 10.194 | Z2 | 1.638 | range | 15.660 |
males | 0.654 | sd | 0.562 | males | 0.681 | sd | 0.786 | males | −52.309 | sd | 0.696 |
C. violaceus 2010–2012 | C. violaceus high activity | C. violaceus low activity | |||||||||
intercept | −0.661 | Z1:males | −0.487 | intercept | −0.653 | Z1:males | −0.484 | intercept | −13.036 | Z1:males | −0.633 |
Z1 | −0.168 | Z2:males | −0.248 | Z1 | −0.183 | Z2:males | −0.214 | Z1 | −56.002 | Z2:males | −39.822 |
Z2 | 0.254 | range | 11.931 | Z2 | 0.223 | range | 13.056 | Z2 | 8.902 | range | 16.344 |
males | 0.511 | sd | 0.506 | males | 0.511 | sd | 0.501 | males | −0.633 | sd | 0.670 |
C. hortensis 2010–2012 | C. hortensis high activity | C. hortensis low activity | |||||||||
intercept | −2.803 | Z1:males | −0.682 | intercept | −2.899 | Z1:males | −6.969 | intercept | −4.603 | Z1:males | 4.656 |
Z1 | 1.575 | Z2:males | −1.816 | Z1 | 1.661 | Z2:males | −0.694 | Z1 | −2.474 | Z2:males | −0.951 |
Z2 | 1.254 | range | 13.927 | Z2 | 1.326 | range | 15.022 | Z2 | 0.685 | range | 14.858 |
males | 1.044 | sd | 0.888 | males | 1.085 | sd | 0.582 | males | 0.811 | sd | 0.645 |
C. arvensis 2010–2012 | C. arvensis high activity | C. arvensis low activity | |||||||||
intercept | −0.146 | Z1:males | −0.065 | intercept | −0.367 | Z1:males | 0.176 | intercept | −1.883 | Z1:males | −4.915 |
Z1 | −0.400 | Z2:males | 0.301 | Z1 | −0.479 | Z2:males | 0.245 | Z1 | −0.111 | Z2:males | 0.652 |
Z2 | 0.285 | range | 14.354 | Z2 | 0.368 | range | 21.383 | Z2 | −0.025 | range | 15.918 |
males | −0.224 | sd | 0.508 | males | −0.177 | sd | 0.526 | males | −0.500 | sd | 0.472 |
imagines 2010–2012 (AIC 1455.3) | imagines high activity (AIC 1405.9) | imagines low activity (AIC 292.0) | |||||||||
interc | 0.026 | Z1:C.viol | −1.161 . | interc | 0.013 | Z1:C.viol | −1.094 . | interc | −4.331 *** | Z1:C.viol | −2.539 |
Z1 | 0.747 * | Z2:C.viol | −0.025 | Z1 | 0.680 | Z2:C.viol | 0.012 | Z1 | 2.539 . | Z2:C.viol | 14.873 |
Z2 | 0.132 | Z1:C.hort | −0.245 | Z2 | 0.080 | Z1:C.hort | −0.444 | Z2 | 1.716 | Z1:C.hort | −1.099 |
C.viol | 0.388 * | Z2:C.hort | 0.646 . | C.viol | 0.401 * | Z2:C.hort | 0.760 . | C.viol | −15.972 | Z2:C.hort | −1.504 |
C.hort | −1.221 *** | Z1:C.arv | −1.168 . | C.hort | −1.348 *** | Z1:C.arv | −1.086 | C.hort | 1.099 | Z1:C.arv | −3.045 . |
C.arv | 0.549 ** | Z2:C.arv | 0.244 | C.arv | 0.392 * | Z2:C.arv | 0.312 | C.arv | 3.045 ** | Z2:C.arv | −1.435 |
females 2010–2012 (AIC 935.5) | females high activity (AIC 889.2) | females low activity (AIC 213.5) | |||||||||
interc | −1.035 *** | Z1:C.viol | −1.159 | interc | −1.073 *** | Z1:C.viol | −1.014 | interc | −4.331 *** | Z1:C.viol | −2.539 |
Z1 | 1.035 * | Z2:C.viol | 0.103 | Z1 | 0.890 | Z2:C.viol | 0.225 | Z1 | 2.540 . | Z2:C.viol | 14.870 |
Z2 | 0.155 | Z1:C.hort | 0.406 | Z2 | −0.002 | Z1:C.hort | 0.732 | Z2 | 1.716 | Z1:C.hort | −18.510 |
C.viol | 0.465 . | Z2:C.hort | 1.069 | C.viol | 0.503 . | Z2:C.hort | 1.312 * | C.viol | −15.970 | Z2:C.hort | −1.099 |
C.hort | −1.504 ** | Z1:C.arv | −1.427 . | C.hort | −1.649 *** | Z1:C.arv | −1.380 | C.hort | 0.000 | Z1:C.arv | −2.565 |
C.arv | 1.022 *** | Z2:C.arv | 0.077 | C.arv | 0.869 *** | Z2:C.arv | 0.276 | C.arv | 2.565 * | Z2:C.arv | −1.718 |
males 2010–2012 (AIC 1120.5) | males high activity (AIC 1082.4) | males low activity (AIC 153.7) | |||||||||
interc | −0.399 * | Z1:C.viol | −1.192 | interc | −0.399 * | Z1:C.viol | −1.192 | interc | −22.230 | Z1:C.viol | −0.000 |
Z1 | 0.553 | Z2:C.viol | −0.115 | Z1 | 0.553 | Z2:C.viol | −0.115 | Z1 | 0.000 | Z2:C.viol | −0.000 |
Z2 | 0.119 | Z1:C.hort | −0.847 | Z2 | 0.119 | Z1:C.hort | −17.233 | Z2 | 0.000 | Z1:C.hort | 1.846 |
C.viol | 0.345 | Z2:C.hort | 0.437 | C.viol | 0.345 | Z2:C.hort | 0.498 | C.viol | 0.000 | Z2:C.hort | −0.076 |
C.hort | −1.099 *** | Z1:C.arv | −1.010 | C.hort | −1.224 *** | Z1:C.arv | −0.867 | C.hort | 18.660 | Z1:C.arv | −20.050 |
C.arv | 0.163 | Z2:C.arv | 0.411 | C.arv | 0.019 | Z2:C.arv | 0.397 | C.arv | 20.050 | Z2:C.arv | 0.617 |
imagines 2010–2012 (ra 11.153, sd 0.356) | imagines high activity (ra 11.828, sd 0.337) | imagines low activity (ra 19.019, sd 0.689) | |||||||||
interc | −0.025 | Z1:C.viol | −1.073 | interc | −0.013 | Z1:C.viol | −1.028 | interc | −4.545 | Z1:C.viol | −7.498 |
Z1 | 0.656 | Z2:C.viol | −0.028 | Z1 | 0.614 | Z2:C.viol | 0.009 | Z1 | 2.478 | Z2:C.viol | 16.180 |
Z2 | 0.145 | Z1:C.hort | −0.187 | Z2 | 0.099 | Z1:C.hort | −0.407 | Z2 | 1.703 | Z1:C.hort | −1.185 |
C.viol | 0.393 | Z2:C.hort | 0.647 | C.viol | 0.407 | Z2:C.hort | 0.762 | C.viol | −17.144 | Z2:C.hort | −1.694 |
C.hort | −1.216 | Z1:C.arv | −1.104 | C.hort | −1.342 | Z1:C.arv | −1.047 | C.hort | 1.098 | Z1:C.arv | −3.243 |
C.arv | 0.564 | Z2:C.arv | 0.237 | C.arv | 0.403 | Z2:C.arv | 0.308 | C.arv | 3.047 | Z2:C.arv | −1.488 |
females 2010–2012 (ra 17.965, sd 0.344) | females high activity (ra 22.021, sd 0.421) | females low activity (ra 21.230, sd 0.851) | |||||||||
interc | −1.109 | Z1:C.viol | −1.163 | interc | −1.074 | Z1:C.viol | 0.217 | interc | −4.567 | Z1:C.viol | −7.421 |
Z1 | 1.030 | Z2:C.viol | 0.100 | Z1 | 0.047 | Z2:C.viol | −1.021 | Z1 | 2.410 | Z2:C.viol | 16.224 |
Z2 | 0.184 | Z1:C.hort | 0.430 | Z2 | 0.888 | Z1:C.hort | 1.335 | Z2 | 1.607 | Z1:C.hort | −5.962 |
C.viol | 0.468 | Z2:C.hort | 1.086 | C.viol | 0.511 | Z2:C.hort | 0.770 | C.viol | −17.187 | Z2:C.hort | −1.165 |
C.hort | −1.504 | Z1:C.arv | −1.430 | C.hort | −1.647 | Z1:C.arv | 0.275 | C.hort | −0.141 | Z1:C.arv | −2.613 |
C.arv | 1.029 | Z2:C.arv | 0.077 | C.arv | 0.878 | Z2:C.arv | −1.391 | C.arv | 2.499 | Z2:C.arv | −1.741 |
males 2010–2012 (ra 10.596, sd 0.506) | males high activity (ra 11.349, sd 0.479) | males low activity (ra 14.383, sd 0.457) | |||||||||
interc | −0.478 | Z1:C.viol | −1.133 | interc | −0.470 | Z1:C.viol | −1.140 | interc | −30.388 | Z1:C.viol | −4.823 |
Z1 | 0.461 | Z2:C.viol | −0.118 | Z1 | 0.476 | Z2:C.viol | −0.114 | Z1 | −32.811 | Z2:C.viol | −18.367 |
Z2 | 0.130 | Z1:C.hort | −0.839 | Z2 | 0.131 | Z1:C.hort | −5.889 | Z2 | −12.985 | Z1:C.hort | 34.429 |
C.viol | 0.344 | Z2:C.hort | 0.433 | C.viol | 0.342 | Z2:C.hort | 0.500 | C.viol | −38.298 | Z2:C.hort | 12.816 |
C.hort | −1.095 | Z1:C.arv | −0.959 | C.hort | −1.226 | Z1:C.arv | −0.824 | C.hort | 26.617 | Z1:C.arv | −42.926 |
C.arv | 0.165 | Z2:C.arv | 0.413 | C.arv | 0.021 | Z2:C.arv | 0.400 | C.arv | 28.023 | Z2:C.arv | 13.640 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehnert, A.; Wagner, S.; Huth, F. Spatio-Temporal Distribution of Carabids Influenced by Small-Scale Admixture of Oak Trees in Pine Stands. Diversity 2020, 12, 398. https://doi.org/10.3390/d12100398
Wehnert A, Wagner S, Huth F. Spatio-Temporal Distribution of Carabids Influenced by Small-Scale Admixture of Oak Trees in Pine Stands. Diversity. 2020; 12(10):398. https://doi.org/10.3390/d12100398
Chicago/Turabian StyleWehnert, Alexandra, Sven Wagner, and Franka Huth. 2020. "Spatio-Temporal Distribution of Carabids Influenced by Small-Scale Admixture of Oak Trees in Pine Stands" Diversity 12, no. 10: 398. https://doi.org/10.3390/d12100398
APA StyleWehnert, A., Wagner, S., & Huth, F. (2020). Spatio-Temporal Distribution of Carabids Influenced by Small-Scale Admixture of Oak Trees in Pine Stands. Diversity, 12(10), 398. https://doi.org/10.3390/d12100398