Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Central Gulf Platform Study in 1978
3.2. Benthos Studies in 1985–1986
3.3. Offshore Ecology Investigation in 1972–1973
3.4. Louisiana Offshore Oil Port (LOOP) in 1980–1995
3.5. Benthic Assemblages in 1990–1991
3.6. Benthic Assemblages in 2003–2004
3.7. Shifts in Feeding Modes
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1
Station | Depth (m) | Sediment Type | Spr Surf Salinity | Spr Bott Salinity | Sum Surf Salinity | Sum Bott Salinity | Spr DO Surf (mg·L−1) | Spr DO Bott (mg·L−1) | Sum DO Surf (mg·L−1) | Sum DO Bott (mgL−1) |
C21 | 14.0 | clayey silt | 22.8 | 32.8 | 25.8 | 33.0 | 14.00 | 3.00 | 6.60 | 2.40 |
C22 | 21.0 | sandy silt | 27.8 | 36.0 | 32.1 | 35.0 | 8.00 | 1.60 | 6.40 | 6.00 |
C23 | 37.0 | silt | 36.0 | 36.1 | 30.4 | 34.5 | 6.80 | 7.60 | 4.50 | 4.60 |
C24 | 17.0 | silt | 31.1 | 35.5 | 32.2 | 33.2 | 7.20 | 1.30 | 6.30 | 6.20 |
P1 | 16.0 | sandy silt | 13.4 | 35.9 | 26.9 | 34.3 | 10.00 | 3.10 | 9.60 | 1.60 |
P2 | 14.0 | silty sand | 23.4 | 31.8 | 21.9 | 32.8 | 13.00 | 6.20 | 9.60 | 2.40 |
P3 | 29.0 | sand | 34.8 | 36.2 | 30.1 | 36.6 | 6.40 | 4.40 | 6.20 | 4.20 |
Appendix A.2
Station | Spring Polychaete Abundance (Indiv. Station−1) | Spring Species Richness (Number Station−1) | Summer Polychaete Abundance (Indiv. Station−1) | Summer Species Richness (Number Station−1) |
C21 | 2767.0 | 33.0 | 32.0 | 4.0 |
C22 | 1376.0 | 42.0 | 73.0 | 18.0 |
C23 | 397.0 | 32.0 | 240.0 | 25.0 |
C24 | 1377.0 | 18.0 | 108.0 | 16.0 |
P1 | 1601.0 | 31.9 | 172.5 | 14.1 |
P2 | 2662.6 | 58.1 | 413.8 | 11.3 |
P3 | 1050.8 | 53.4 | 392.8 | 39.0 |
Appendix B
Station | Depth (m) | Date | Surface Salinity | Bottom Salinity | Surface Dissolved Oxygen (mg·L−1) | Bottom Dissolved Oxygen (mg·L−1) | Polychaete Abundance (no. m−2) | Number of Polychaete Species Per Station |
C3 | 10.6 | 6/26/85 | 20.3 | 30.6 | 8.80 | 3.00 | 14,578 | 10 |
C4 | 13.1 | 6/26/85 | 19.6 | 33.4 | 9.50 | 0.20 | 8434 | 7 |
C5 | 16.3 | 6/27/85 | 22.0 | 34.9 | 8.70 | 0.17 | 4458 | 6 |
C3 | 10.6 | 7/9/85 | 25.3 | 29.9 | 8.70 | 2.10 | 15,060 | 5 |
C4 | 13.1 | 7/9/85 | 25.2 | 34.1 | 8.10 | 0.17 | 5181 | 5 |
C5 | 16.3 | 7/10/85 | 25.8 | 34.9 | 7.40 | 0.27 | 6124 | 7 |
C3 | 10.6 | 7/15/85 | 25.1 | 34.7 | 6.60 | 0.33 | 5060 | 7 |
C4 | 13.1 | 8/6/85 | 27.3 | 34.9 | 6.80 | 0.18 | 2169 | 5 |
C5 | 16.3 | 8/6/85 | 25.8 | 35.4 | 6.10 | 0.13 | 904 | 2 |
C3 | 10.6 | 9/6/85 | 28.8 | 30.6 | 5.70 | 5.00 | 14,699 | 12 |
C4 | 13.1 | 9/6/85 | 30.4 | 30.9 | 7.40 | 6.20 | 6827 | 9 |
C5 | 16.3 | 9/6/85 | 31.2 | 31.2 | 6.30 | 6.20 | 1506 | 8 |
C3 | 10.6 | 10/10/85 | 29.8 | 29.8 | 6.50 | 6.50 | 8434 | 8 |
C4 | 13.1 | 10/10/85 | 30.5 | 30.5 | 6.40 | 6.40 | 5422 | 10 |
C5 | 16.3 | 10/10/85 | 30.8 | 30.9 | 6.40 | 6.40 | 3414 | 8 |
C3 | 10.6 | 12/9/85 | 25.1 | 25.6 | 8.00 | 8.00 | 5271 | 11 |
C4 | 13.1 | 12/9/85 | 25.7 | 27.0 | 7.80 | 6.70 | 4217 | 10 |
C5 | 16.3 | 12/9/85 | 26.8 | 28.5 | 7.60 | 6.00 | 2289 | 6 |
C3 | 10.6 | 1/30/86 | 29.5 | 29.6 | 9.50 | 9.40 | 1807 | 2 |
C4 | 13.1 | 1/30/86 | 29.9 | 30.1 | 8.40 | 8.00 | 703 | 2 |
C5 | 16.3 | 1/30/86 | 30.3 | 30.8 | 7.20 | 6.80 | 1807 | 2 |
C3 | 10.6 | 3/3/86 | 29.3 | 31.6 | 7.60 | 4.60 | 5020 | 9 |
C4 | 13.1 | 3/3/86 | 29.1 | 31.6 | 7.60 | 5.40 | 3494 | 8 |
C5 | 16.3 | 3/3/86 | 29.6 | 32.1 | 7.60 | 4.60 | 3494 | 11 |
C3 | 10.6 | 4/17/86 | 28.7 | 31.3 | 9.40 | 1.90 | 67,711 | 19 |
C4 | 13.1 | 4/17/86 | 29.3 | 30.8 | 8.80 | 3.50 | 49,157 | 15 |
C5 | 16.3 | 4/17/86 | 29.5 | 31.1 | 9.20 | 6.30 | 20,120 | 15 |
C3 | 10.6 | 5/28/86 | 27.7 | 32.8 | 7.20 | 3.50 | 45,542 | 19 |
C4 | 13.1 | 5/28/86 | 28.3 | 33.3 | 6.70 | 2.00 | 79,157 | 13 |
C5 | 16.3 | 5/28/86 | 29.1 | 33.5 | 7.00 | 2.50 | 64,217 | 15 |
C3 | 10.6 | 6/27/86 | 17.2 | 29.0 | 6.90 | 5.30 | 13,494 | 5 |
C4 | 13.1 | 6/27/86 | 17.8 | 30.5 | 7.50 | 3.60 | 64,940 | 12 |
C5 | 16.3 | 6/27/86 | 16.8 | 34.0 | 9.20 | 0.46 | 16,265 | 7 |
C3 | 10.6 | 7/22/86 | 26.6 | 35.5 | 6.20 | 0.22 | 3735 | 5 |
C4 | 13.1 | 7/22/86 | 27.4 | 35.7 | 6.00 | 0.19 | 16,747 | 4 |
C5 | 16.3 | 7/22/86 | 26.9 | 35.6 | 6.10 | 0.21 | 4578 | 3 |
C3 | 10.6 | 8/19/86 | 30.6 | 34.50 | 6.00 | 0.20 | 6024 | 6 |
C4 | 13.1 | 8/19/86 | 31.0 | 34.50 | 6.20 | 0.30 | 29,639 | 4 |
C5 | 16.3 | 8/19/86 | 31.3 | 34.40 | 6.40 | 0.32 | 22,169 | 7 |
Appendix C
Spring Dominant Polychaetes 1978 [17] | Spring 1985–1986 Dominant Polychaetes [14] | Summer Dominant Polychaetes 1978 [17] | Summer 1895–1986 Dominant Polychaetes [14] | ||||||||
Genus | >75% Cum Number | Feeding Mode | Genus | Stations C4 and C5 | Feeding Mode | Genus | >75% Cum Number | Feeding Mode | Genus | Stations C4 and C5 | Feeding Mode |
Paraprionospio | 36.6 | SD | Paraprionospio | 498 | SD | Paraprionospio | 25.1 | SD | Magelona | 168 | SD |
Mediomastus | 51.1 | SbD | Magelona | 375 | SD | Sigambra | 27.6 | C | Ancistrosyllis | 4 | C |
Tharyx | 52.8 | SbD | Mediomastus | 43 | SbD | Magelona | 52.6 | SD | Sigambra | 3 | C |
Aricidea | 54.0 | SbD | Sabellides | 137 | SD | Notomastus | 55.1 | SbD | Ampharete | 1 | SD |
Notomastus | 54.9 | SbD | Sigambra | 11 | C | Lumbrineris | 59.0 | O | Melinna | 1 | SD |
Cossura | 55.7 | SbD | Gyptis | 4 | C | Diopatra | 60.7 | C | Cossura | 1 | SbD |
Prionospio | 56.8 | SD | Polynoidae | 1 | O | Cossura | 62.3 | SbD | |||
Diopatra | 57.6 | C | Prionospio | 6 | SD | Nereis | 68.2 | C | |||
Nereis | 59.3 | C | Eumida | 6 | O | Nephtys | 73.5 | O | |||
Sthenelais | 60.8 | C | Cossura | 2 | SbD | ||||||
Phyllodoce | 61.4 | C | Ancistrosyllis | 1 | C | ||||||
Lumbrineris | 62.0 | O | Aricidea | 3 | SD | ||||||
Magelona | 63.2 | SD | Glycinde | 2 | C | ||||||
Prionospio | 71.7 | SD | Chaetozone | 28 | SD | ||||||
Glycera | 73.1 | C | Diopatra | 3 | C | ||||||
Chaetozone | 73.5 | SD | Polydora | 18 | SD | ||||||
Armandia | 74.0 | SbD | Ampharete | 11 | SD | ||||||
Nereis | 1 | C | |||||||||
Tharyx | 1 | SD | |||||||||
Pseudolpolydora | 1 | SbD |
References
- Rabalais, N.N.; Turner, R.E. Management Case Study: Mississippi River. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 11, pp. 77–101. [Google Scholar]
- Rabalais, N.N.; Díaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused coastal hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef] [Green Version]
- Mississippi River Nutrient/Gulf of Mexico Hypoxia Task Force. Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico; Office of Wetlands, Oceans, and Watersheds, U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Hypoxia Task Force Report to Congress; Environmental Protection Agency: Washington, DC, USA, 2015. [CrossRef]
- PaveIa, J.S.; Ross, J.L.; Chittenden, M.E., Jr. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Northeast Gulf Sci. 1983, 6, 167–173. [Google Scholar]
- Renaud, M. Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries. Fish. Bull. 1986, 84, 19–26. [Google Scholar]
- Craig, J.K.; Crowder, L.B. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Mar. Ecol. Prog. Ser. 2005, 294, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Asche, F.; Bennear, L.S.; Oglend, A. Spatial-dynamics of hypoxia and fisheries: The case of Gulf of Mexico brown shrimp. Mar. Res. Econ. 2014, 29, 111–131. [Google Scholar] [CrossRef]
- Smith, M.D.; Oglend, A.; Kirkpatrick, A.J.; Asche, F.; Bennear, L.S.; Craig, J.K.; Nance, J.M. Seafood prices reveal impacts of a major ecological disturbance. Proc. Natl. Acad. Sci. USA 2017, 201617948. [Google Scholar] [CrossRef] [Green Version]
- Purcell, K.M.; Craig, J.K.; Nance, J.M.; Smith, M.D.; Bennear, L.S. Fleet behavior is responsive to a large-scale environmental disturbance: Hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery. PLoS ONE 2017, 12, e0183032. [Google Scholar] [CrossRef]
- Rabalais, N.N. Ocean Deoxygenation: Everyone’s Problem: Causes, Impacts, Consequences and Solutions; IUCN: Gland, Switzerland, 2019; pp. 399–419. [Google Scholar]
- Rabalais, N.N.; Turner, R.E.; Sen Gupta, B.K.; Platon, E.; Parsons, M.L. Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecol. Appl. 2007, 17, S129–S143. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Smith, L.M.; Turner, R.E. The Deepwater Horizon oil spill and Gulf of Mexico shelf hypoxia. Cont. Shelf Res. 2018, 152, 98–107. [Google Scholar] [CrossRef]
- Rabalais, N.N.; (Louisiana State University, Baton Rouge, LA, USA). Benthic studies on the northern Gulf of Mexico in a seasonally severe zone of oxygen depletion in 1985–1986. Personal communication, unpublished data. 2019. [Google Scholar]
- Rabalais, N.N.; Smith, L.E.; Harper, D.E., Jr.; Justić, D. Effects of seasonal hypoxia on continental shelf benthos. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems; Rabalais, N.N., Turner, R.E., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 211–240. [Google Scholar]
- Turner, R.E.; Rabalais, N.N.; Swenson, E.M.; Kasprzak, M.; Romaire, T. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Mar. Envtl. Res. 2005, 59, 65–77. [Google Scholar] [CrossRef]
- Fitzhugh, J.K. Factors Determining the Distribution and Abundance of Polychaetous Annelids on the Central Northern Gulf of Mexico Continental Shelf. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 1983. [Google Scholar]
- Shivarudrappa, S.K.; Briggs, K.B. Macrobenthos community succession in the northern Gulf of Mexico hypoxic regions: Testing the Pearson-Rosenberg model. J. Mar. Res. 2017, 75, 18–46. [Google Scholar] [CrossRef]
- Farrell, D.H. Benthic Ecology of Timbalier Bay, Louisiana, and Adjacent Offshore Areas in Relation to Oil Production. Ph.D. Dissertation, Florida State University, Tallahassee, FL, USA, December 1974. [Google Scholar]
- Rabalais, N.N.; Turner, R.E.; Scavia, D. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience 2002, 52, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Cai, W.-J.; Carstensen, J.; Conley, D.J.; Fry, F.; Quiñones-Rivera, Z.; Rosenberg, R.; Slomp, C.P.; Turner, R.E.; Voss, M.; et al. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 2014, 70, 123–133. [Google Scholar]
- Oetking, P.; Back, R.; Watson, R.; Merks, C. Hydrography on the Nearshore Continental Shelf of South Central Louisiana: Final Report of Offshore Ecology Investigation for Gulf Universities Research Consortium, Project No. 03-3720; Southwest Research Institute: Galveston, TX, USA; Corpus Christi, TX, USA, 1974. [Google Scholar]
- Ward, C.H.; Bender, M.E.; Reish, D.J. The Offshore Ecology Investigation. Effects of oil drilling and production in a coastal environment. Rice Univ. Stud. 1979, 65, 1–589. [Google Scholar]
- Turner, R.E.; Swenson, E.M.; Kasprzak, M.; Romaire, T. Vol. 2. Water Chemistry. LOOP Marine and Estuarine Monitoring Program, 1978–1995; Sasser, C.E., Visser, J.M., Eds.; Res. Rep. No. 316, LTRC Project No. 97-31MP, State Proj. No. 736-99-0449; Conducted for the Louisiana Transportation Research Center: Baton Rouge, LA, USA, 1998. [Google Scholar]
- Ragan, J.G.; Harris, A.H.; Green, J.H. Temperature, Salinity and Oxygen Measurements of Surface and Bottom Waters on the Continental Shelf off Louisiana during Portions of 1975 and 1976; Professional Paper Series 3; Biology, Nicholls State University: Thibodaux, LA, USA, 1978; pp. 1–29. [Google Scholar]
- Turner, R.E.; Allen, R.L. 1982. Bottom water oxygen concentration in the Mississippi River Delta bight. Contr. Mar Sci. 1982, 25, 161–172. [Google Scholar]
- Rabalais, N.N.; Turner, R.E. Gulf of Mexico hypoxia: Past, present, and future. Limnol. Oceanogr. Bull. 2019, 28, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boesch, D.F.; Rabalais, N.N. Effects of hypoxia on continental shelf benthos: Comparisons between the New York Bight and the northern Gulf of Mexico. In Modern and Ancient Continental Shelf Anoxia Geological Society Spec. Publ.; Tyson, R.V., Pearson, T.H., Eds.; The Geological Society: London, UK, 1991; Volume 58, pp. 27–34. [Google Scholar]
- Baustian, M.M.; Craig, J.K.; Rabalais, N.N. Effects of summer 2003 hypoxia on macrobenthos and Atlantic croaker foraging selectivity in the northern Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 2009, 381, S31–S37. [Google Scholar] [CrossRef]
- Baustian, M.M.; Rabalais, N.N. Seasonal composition of benthic macroinfauna exposed to hypoxia in the northern Gulf of Mexico. Estuar. Coasts 2009, 32, 975–983. [Google Scholar] [CrossRef]
- Flowers, C.W.; Miller, W.T.; Gann, J.D. Water Chemistry. In Environmental Assessment of a Louisiana Offshore Oil Port and Apertinent Storage and Pipeline Facilities-Technical Appendices, Vol. II; Gosselink, J.G., Miller, R.H., Hood, M., Bahr, L.M., Eds.; Final Report to the Louisiana Offshore Oil Port, Inc.: New Orleans, LA, USA, 1975. [Google Scholar]
- Gaston, G.R.; Vittor, B.A.; Barrett, B.; Wolf, P.S. Benthic Communities of Louisiana Coastal Waters; Technical Bulletin No. 45; Report to the Louisiana Department of Wildlife and Fisheries: Baton Rouge, LA, USA, 1998. [Google Scholar]
- Pearson, T.H.; Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution in the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 1978, 16, 229–231. [Google Scholar]
- Turner, R.E.; Rabalais, N.N.; Justić, D. Summer bottom-water temperature trends northern Gulf of Mexico continental shelf, 1985 to 2015. PLoS ONE 2017, 12, e0184350. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.A.; Nance, J.M. Three decades of U.S. Gulf of Mexico white shrimp, Litopenaeus setiferus, commercial catch statistics. Mar. Fish. Rev. 2012, 75, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Wells, R.J.D.; Cowan, J.H., Jr.; Patterson, W.F., III. Habitat use and the effect of shrimp trawling on fish and invertebrate communities over the northern Gulf of Mexico continental shelf. ICES J. Mar. Sci. 2008, 65, 1610–1619. [Google Scholar] [CrossRef]
- Sheridan, P.; Doerr, J. Short-term effects of the cessation of shrimp trawling on Texas benthic habitats. Am. Fish. Soc. Symp. 2005, 41, 571–578. [Google Scholar]
- Smith, J.E.; Bentley, S.J.; Snedden, G.A.; White, C. What role do hurricanes play in sedimentary delivery to subsiding river deltas? Sci. Rep. 2015, 5, 17582. [Google Scholar] [CrossRef]
- Duarte, C.M.; Conley, D.J.; Carstensen, J.; Sánchez-Camacho, M. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuar. Coasts 2009, 32, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Harper, D.E., Jr.; McKinney, L.D.; Salzer, R.R.; Case, R.J. The occurrence of hypoxic bottom water off the upper Texas coast and its effects on the benthic biota. Contr. Mar. Sci. 1981, 24, 53–79. [Google Scholar]
- Gaston, G.R. Effects of hypoxia on macrobenthos of the inner shelf off Cameron, Louisiana. Estuar. Coast. Shelf Sci. 1985, 20, 603–613. [Google Scholar] [CrossRef]
- Gaston, G.R.; Rutledge, P.A.; Walther, M.L. The effects of hypoxia and brine on recolonization by macrobenthos off Cameron, Louisiana (USA). Contr. Mar. Sci. 1985, 28, 29–93. [Google Scholar]
- Bedinger, C.A., Jr.; Childers, R.E.; Cooper, J.; Kimball, K.T.; Kwok, A. Background, Program Organization and Study Plan. Ecological Investigations of Petroleum Production Platforms in the Central Gulf of Mexico. Vol. 1 (Sec. 1); Report to Bureau of Land Management Contract No. AA551-CT-8-17; Southwest Research Institute: San Antonio, TX, USA, 1981. [Google Scholar]
- Shivarudrappa, S. Macrobenthic Communities in the Northern Gulf of Mexico Hypoxic Zone: Testing the Pearson-Rosenberg Model. Ph.D. Dissertation, University of Southern Mississippi, Hattiesburg, MS, USA, December 2015. [Google Scholar]
- Rabalais, N.N.; Wiseman, W.J., Jr.; Turner, R.E. Comparison of continuous records of near-bottom dissolved oxygen from the hypoxia zone along the Louisiana coast. Estuaries 1994, 17, 850–861. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr.; Dortch, Q. Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. Reg. Rivers: Res. Mngt. 1998, 14, 161–177. [Google Scholar] [CrossRef]
- Powers, S.P.; Harper, D.E., Jr.; Rabalais, N.N. Effect of hypoxia/anoxia on the supply and settlement of benthic invertebrate larvae. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems; Rabalais, N.N., Turner, R.E., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 185–210. [Google Scholar]
- Quiroga, E.; Quiñones, R.A.; González, R.R.; Gallardo, V.A.; Gerdhard, J. Aerobic and anaerobic metabolism of Paraprionospio pinnata (Polychaeta: Spionidae) in central Chile. J. Mar. Biol. Assoc. UK 2007, 87, 459–463. [Google Scholar] [CrossRef]
- Levin, L.A.; Ekau, W.; Gooday, A.; Jorrisen, F.; Middelburg, J.; Naqvi, W.; Neira, C.; Rabalais, N.N.; Zhang, J. Effects of natural and human-induced hypoxia on coastal benthos. Biogeoscience 2009, 6, 2063–2098. [Google Scholar] [CrossRef] [Green Version]
- Josefson, A.B.; Widbom, B. Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Mar. Biol. 1988, 100, 31–40. [Google Scholar] [CrossRef]
- Yokoyama, H. Occurrence of Paraprionospio sp. (form A) larvae (Polychaeta: Spionidae) in hypoxic waters of an enclosed bay. Estuar. Coast. Shelf Sci. 1995, 40, 9–19. [Google Scholar] [CrossRef]
- Lamont, P.A.; Gage, J.D. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep-Sea Res. 2000, 47, 9–24. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Van Cappellen, P.; Basu, N.B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 2018, 360, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Ballard, T.C.; McIsaac, G.F.; Michalak, A.M.; Rabalais, N.N.; Turner, R.E. Comment on “Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico.”. Science 2019, 365, eaau8401. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; McKee, B.A.; Reed, D.J.; Means, J.C. Fate and effects of produced water discharges in coastal Louisiana, Gulf of Mexico, USA. In Produced Water; Ray, J.P., Engelhardt, F.R., Eds.; Plenum Press: New York, NY, USA, 1992; pp. 355–369. [Google Scholar]
- Montagna, P.A.; Harper, D.E., Jr. Benthic infaunal long-term response to offshore production platforms in the Gulf of Mexico. Can. J. Fish. Aquat. Sci. 1996, 53, 2567–2588. [Google Scholar] [CrossRef]
- Montagna, P.A.; Baguley, J.G.; Cooksey, C.; Hartwell, I.; Hyde, L.J.; Hyland, J.L.; Kalke, R.D.; Kracker, L.M.; Reuscher, M.; Rhodes, A.C.E. Deep-sea benthic footprint of the Deepwater Horizon blowout. PLoS ONE 2013, 8, e70540. [Google Scholar] [CrossRef]
- Ecological Condition of Coastal Ocean Waters of the Western Gulf of Mexico: 2011. Available online: http://aquaticcommons.org/14670/1/NOS%20NCCOS%20171.pdf (accessed on 1 January 2020).
Year of Benthic Infauna Data | Stations in Figure 1 | Depth (m) | Months of Study | Study Citation |
---|---|---|---|---|
1972–1973 | Near C6 | 18–21 | Spring, Summer | [19] |
1978 | White triangle | 14–21, 29–37 | May, August | [17] |
1978–1996 | Yellow circle | 9–25 | Seasonal | [16,31,32] |
1985–1986 | C3–C5, white circle | 10, 13, 16 | Monthly | [14] |
1990–1991 | Yellow triangle | 20–21 | Monthly | [15] |
2004 | C6, white circle | 21 | Monthly | [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabalais, N.N.; Baustian, M.M. Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia. Diversity 2020, 12, 49. https://doi.org/10.3390/d12020049
Rabalais NN, Baustian MM. Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia. Diversity. 2020; 12(2):49. https://doi.org/10.3390/d12020049
Chicago/Turabian StyleRabalais, Nancy N., and Melissa M. Baustian. 2020. "Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia" Diversity 12, no. 2: 49. https://doi.org/10.3390/d12020049
APA StyleRabalais, N. N., & Baustian, M. M. (2020). Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia. Diversity, 12(2), 49. https://doi.org/10.3390/d12020049