Analysis of Ficus hirta Fig Endosymbionts Diversity and Species Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism Sampling
2.2. Microorganism DNA Extraction and High-Throughput Sequencing
2.3. OTU Clustering and Species Classification
2.4. Analysis of Microbial Community Diversity
2.5. Functional Prediction Analysis
3. Results
3.1. Result of OTUs Analysis
3.2. Results of OTUs Taxonomic and Community Species Composition Analyses
3.3. Results of Microorganism α-Diversity and β-Diversity Analyses
3.4. Result of Functional Prediction Analysis
4. Discussion
4.1. Ficus Hirta Figs Microbial Composition
4.2. Microbial Diversity of Ficus Hirta Figs
4.3. Functional Prediction Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L. Advances of Researches on Endophytic Fungi. Mycosystema 2001, 20, 148–152. [Google Scholar] [CrossRef]
- Schulz, B.; Wanke, U.; Draeger, S.; Aust, H.J. Endophytes from Herbaceous Plants and Shrubs—Effectiveness of Surface Sterilization Methods. Mycol. Res. 1993, 97, 1447–1450. [Google Scholar] [CrossRef]
- Petrini, O. Fungal Endophytes of Tree Leaves; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Chen, J.; Li, Y. Studies on the Species Diversity and Their Comparison of Endophytic Fungi from Female and Male Syconia of Tropical Ficus oligodon. J. Yunnan Agric. Univ. 2011, 26, 298–302. [Google Scholar] [CrossRef]
- Baumann, P. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef] [PubMed]
- Elston, K.M.; Leonard, S.P.; Geng, P.; Bialik, S.B.; Robinson, E.; Barrick, J.E. Engineering insects from the endosymbiont out. Trends Microbiol. 2021, in press. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Scannerini, S.; Bertea, C.; Maffei, M. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol. 2003, 158, 579–591. [Google Scholar] [CrossRef]
- Obledo, E.N.; Barragan-Barragan, L.B.; Gutierrez-Gonzalez, P.; Ramirez-Hernandez, B.C.; Ramirez, J.J.; Rodriguez-Garay, B. Increased photosyntethic efficiency generated by fungal symbiosis in Agave victoria-reginae. Plant Cell Tissue Organ Cult. 2003, 74, 237–241. [Google Scholar] [CrossRef]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Huckelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [Green Version]
- Broderick, N.A.; Robinson, C.J.; McMahon, M.D.; Holt, J.; Handelsman, J.; Raffa, K.F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 2009, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Ji, D.; Cho, S.; Park, Y. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 2005, 89, 258–264. [Google Scholar] [CrossRef]
- Warr, E.; Das, S.; Dong, Y.; Dimopoulos, G. The Gram-Negative Bacteria-Binding Protein gene family: Its role in the innate immune system of Anopheles gambiae and in anti-Plasmodium defence. Insect. Mol. Biol. 2008, 17, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Provorov, N.A.; Onishchuk, O.P. Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution. Microbiology 2018, 87, 151–163. [Google Scholar] [CrossRef]
- Rousset, F.; Bouchon, D.; Pintureau, B.; Juchault, P.; Solignac, M. Wolbachia Endosymbionts Responsible for Various Alterations of Sexuality in Arthropods. Proc. R. Soc. B-Biol. Sci. 1992, 250, 91–98. [Google Scholar] [CrossRef]
- Berg, C.C. Classification and Distribution of Ficus. Experientia 1989, 45, 605–611. [Google Scholar] [CrossRef]
- William, R.B. Host Specificity of Fig Wasps (Agaonidae). Evolution 1970, 24, 680–691. [Google Scholar] [CrossRef]
- Wiebes, J.T. Co-Evolution of Figs and Their Insect Pollinators. Annu. Rev. Ecol. Syst. 1979, 10, 1–12. [Google Scholar] [CrossRef]
- Cook, J.M.; Rasplus, J.Y. Mutualists with attitude: Coevolving fig wasps and figs. Trends Ecol. Evol. 2003, 18, 241–248. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, G.; Zhang, S.C.; Chen, S.; Wang, Y.B.; Wen, P.; Ma, X.K.; Shi, Y.; Qi, R.; Yang, Y.; et al. Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell 2020, 183, 875–889. [Google Scholar] [CrossRef]
- Tarnecki, A.M.; Burgos, F.A.; Ray, C.L.; Arias, C.R. Fish intestinal microbiome: Diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 2017, 123, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.H.; Yue, Z.; Jia, L.Y.; Yang, X.H.; Niu, L.H.; Wang, Z.; Zhang, P.; Sun, B.F.; He, S.M.; Li, Z.; et al. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol. 2013, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Martinson, E.O.; Herre, E.A.; Machado, C.A.; Arnold, A.E. Culture-Free Survey Reveals Diverse and Distinctive Fungal Communities Associated with Developing Figs (Ficus spp.) in Panama. Microb. Ecol. 2012, 64, 1073–1084. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Mitter, E.K.; de Freitas, J.R.; Germida, J.J. Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Front. Microbiol. 2017, 8, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon, K.; Spor, A.; Breuil, M.C.; Bru, D.; Bizouard, F.; Violle, C.; Barnard, R.L.; Philippot, L. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J. 2017, 11, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.Q.; Wei, Y.R.; Li, Y.M.; Chen, W.H.; Chen, H.Y.; Wang, Q.X.; Yang, F.; Miao, Q.; Xiao, X.; Zhang, H.Y.; et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018, 67, 534–541. [Google Scholar] [CrossRef]
- Sylvain, F.E.; Cheaib, B.; Llewellyn, M.; Correia, T.G.; Fagundes, D.B.; Val, A.L.; Derome, N. pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui(Colossoma macropomum). Sci. Rep. 2016, 6, 32032. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Mitchell, J.; Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 2019, 129, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Singh, D.; Tomlinson, K.W.; Yang, X.D.; Ogwu, M.C.; Slik, J.W.F.; Adams, J.M. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol. 2019, 95, fiz092. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H. Biology of Wolbachia. Annu. Rev. Entomol. 1996, 42, 587–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werren, J.H.; Windsor, D.M. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc. R. Soc. B Biol. Sci. 2000, 267, 1277–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.Y.; Xiao, J.H.; Niu, L.M.; Ma, G.C.; Cook, J.M.; Bian, S.N.; Fu, Y.G.; Huang, D.W. Chaos of Wolbachia sequences inside the compact fig syconia of Ficus benjamina (Ficus: Moraceae). PLoS ONE 2012, 7, e48882. [Google Scholar] [CrossRef] [Green Version]
- Zug, R.; Hammerstein, P. Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Jia, S.; Xu, H.; Liu, Y.; Huang, D. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community. Front. Microbiol. 2016, 7, 136. [Google Scholar] [CrossRef]
- Perlman, S.J.; Hunter, M.S.; Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. Biol. Sci. 2006, 273, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Zhang, Y. Progress in the insect symbiont Rickettsia. Acta Entomol. Sin. 2012, 55, 1103–1108. [Google Scholar] [CrossRef]
- Brumin, M.; Kontsedalov, S.; Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef] [Green Version]
- Niu, L. Bacterial Diversities Associated with the Fig and Four Fig Wasp Species of Ficus Hispida. Ph.D. Thesis, Shandong Agricultural University, Shandong, China, 2013. [Google Scholar]
- Coenye, T. The Family Burkholderiaceae; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Lee, H.H.; Park, J.; Jung, H.; Seo, Y.S. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Collymore, C.; Giuliano, F.; Banks, E.K. Head Tilt in Immunodeficient Mice Due to Contamination of Drinking Water by Burkholderia gladioli. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 246–250. [Google Scholar] [CrossRef]
- Lopes, E.F.; Da Costa, J.G.; Wolf, I.R.; Lima, J.P.A.; Astolfi-Filho, S. Draft Genome Sequence of Burkholderia gladioli Coa14, a Bacterium with Petroleum Bioremediation Potential Isolated from Coari Lake, Amazonas, Brazil. Genome Announc. 2018, 6, e00301-18. [Google Scholar] [CrossRef] [Green Version]
- Brizendine, K.D.; Baddley, J.W.; Pappas, P.G.; Leon, K.J.; Rodriguez, J.M. Fatal Burkholderia gladioli infection misidentified as Empedobacter brevis in a lung transplant recipient with cystic fibrosis. Transpl. Infect. Dis. 2012, 14, E13–E18. [Google Scholar] [CrossRef]
- Quon, B.S.; Reid, J.D.; Wong, P.; Wilcox, P.G.; Javer, A.; Wilson, J.M.; Levy, R.D. Burkholderia gladioli-a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis. Can. Respir. J. 2011, 18, e64–e65. [Google Scholar] [CrossRef] [PubMed]
- Chain, P. Genomic Versatility in the Burkholderia Genus: From Strains to Species; Michigan State University: East Lansing, MI, USA, 2011. [Google Scholar]
- Eberl, L.; Vandamme, P. Members of the genus Burkholderia: Good and bad guys. F1000Research 2016, 5. [Google Scholar] [CrossRef]
- Li, S.L.; Pi, J.; Zhu, H.J.; Yang, L.; Zhang, X.G.; Ding, W. Caffeic Acid in Tobacco Root Exudate Defends Tobacco Plants From Infection by Ralstonia solanacearum. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [Green Version]
- Huda-Shakirah, A.R.; Nur-Salsabila, K.; Mohd, M.H. First report of Fusarium concentricum causing fruit blotch on roselle (Hibiscus sabdariffa). Australas. Plant Dis. Notes J. Australas. Plant Pathol. Soc. 2020, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Fang, X. Research Progress on the Spore Formation and Germination Mechanism of Plant Pathogenic Fungus Fusarium. Chin. J. Grassl. 2021, 43, 106–113. [Google Scholar] [CrossRef]
- Crous, P.W.; Schoch, C.L.; Hyde, K.D.; Wood, A.R.; Gueidan, C.; de Hoog, G.S.; Groenewald, J.Z. Phylogenetic lineages in the Capnodiales. Stud. Mycol. 2009, 64, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q. Taxonomic and phylogenetic characterizations reveal four new species of Simplicillium(Cordycipitaceae, Hypocreales) from Guizhou, China. Sci. Rep. 2021, 11, 15300. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, W.; Liu, R. Recent advances in the study of insect symbiotic bacteria. J. Environ. Entomol. 2020, 42, 615–629. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, J.; Long, C.; Liu, H.; Wan, F. Advances in endosymbionts and their functions in insects. Acta Entomol. Sin. 2014, 57, 111–122. [Google Scholar] [CrossRef]
- Michailides, T.J.; Morgan, D.P. Spread of endosepsis in calimyrna fig orchards. Phytopathology 1998, 88, 637–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michailides, T.J.; Morgan, D.P.; Klamm, R. Comparison of three methods for determining fig endosepsis caused by Fusarium moniliforme and other molds in caprifigs and calimyrna figs. Plant Dis. 1994, 78, 44. [Google Scholar] [CrossRef]
- Yildiz, A.; Benlioglu, S.; Saribiyik, D. Fig endosepsis in some cultivated varieties. J. Phytopathol. 2008, 156, 573–575. [Google Scholar] [CrossRef]
- Sun, X.J.; Xiao, J.H.; Cook, J.M.; Feng, G.; Huang, D.W. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity. BMC Evol. Biol. 2011, 11, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Segar, S.T.; Chantarasuwan, B.; Wong, D.-M.; Wang, R.; Chen, X.; Yu, H. Adaptation of Fig Wasps (Agaodinae) to Their Host Revealed by Large-Scale Transcriptomic Data. Insects 2021, 12, 815. [Google Scholar] [CrossRef]
- Galil, J.; Eisikowitch, D. Flowering Cycles and Fruit Types of Ficus Sycomorus in Israel. New Phytol. 1968, 67, 745–758. [Google Scholar] [CrossRef]
- Glaser, R.L.; Meola, M.A. The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection. PLoS ONE 2010, 5, e11977. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef] [PubMed]
- Montllor, C.B.; Maxmen, A.; Purcell, A.H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 2002, 27, 189–195. [Google Scholar] [CrossRef]
- Teixeira, L.; Ferreira, A.; Ashburner, M. The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster. PLoS Biol. 2008, 6, 2753–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Index Type | Shannon Diversity Index | Ace Index | ||
---|---|---|---|---|
Microbial type | Bacterium | Fungus | Bacterium | Fungus |
Fhf_1 | 0.783 | 0.634 | 88.651 | 14.869 |
Fhf_2 | 0.793 | 0.870 | 192.565 | 41.354 |
Fhf_3 | 1.515 | 1.750 | 135.317 | 33.600 |
Fhm_1 | 2.516 | 0.225 | 243.601 | 36.000 |
Fhm_2 | 2.153 | 1.549 | 221.131 | 24.694 |
Fhm_3 | 2.372 | 1.172 | 261.193 | 59.507 |
Average | 1.689 | 1.033 | 190.410 | 35.004 |
p-value | 0.1273 | 0.0002 ** |
Microbial Type | Bacterium | Fungus | ||
---|---|---|---|---|
Index type | Shannon | Ace | Shannon | Ace |
female-Mean | 1.821 | 219.1 | 1.118 | 38.41 |
female-Sd | 0.91 | 25.58 | 0.64 | 17.49 |
male-Mean | 1.557 | 161.72 | 0.997 | 48.94 |
male-Sd | 0.79 | 89.25 | 0.69 | 25.52 |
p-value | 0.66 | 0.66 | 0.83 | 0.59 |
Q-value | 0.83 | 0.83 | 0.99 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fan, S.; Yu, H. Analysis of Ficus hirta Fig Endosymbionts Diversity and Species Composition. Diversity 2021, 13, 636. https://doi.org/10.3390/d13120636
Liu Y, Fan S, Yu H. Analysis of Ficus hirta Fig Endosymbionts Diversity and Species Composition. Diversity. 2021; 13(12):636. https://doi.org/10.3390/d13120636
Chicago/Turabian StyleLiu, Yifeng, Songle Fan, and Hui Yu. 2021. "Analysis of Ficus hirta Fig Endosymbionts Diversity and Species Composition" Diversity 13, no. 12: 636. https://doi.org/10.3390/d13120636
APA StyleLiu, Y., Fan, S., & Yu, H. (2021). Analysis of Ficus hirta Fig Endosymbionts Diversity and Species Composition. Diversity, 13(12), 636. https://doi.org/10.3390/d13120636