Habitat and Landform Types Drive the Distribution of Carabid Beetles at High Altitudes
Abstract
:1. Introduction
2. Materials and Methods
- -
- Code 4070 (n = 2; bushes with Pinus mugo and Rhododendron hirsutum);
- -
- Code 6170 (n = 11; alpine and subalpine calcareous grasslands);
- -
- Code 8120 (n = 17; calcareous and calcshist screes of the montane to alpine levels);
- -
- Code 8210 (n = 12; calcareous rocky slopes with chasmophytic vegetation);
- -
- Code 8240 (n = 3; limestone pavements);
- -
- Code 9420 (n = 10; alpine Larix decidua and/or Pinus cembra forests) (https://eunis.eea.europa.eu/habitats-annex1-browser.jsp, accessed on 17 January 2021).
- -
- Active debris flow (n = 2);
- -
- Bedrock (n = 14);
- -
- Glacial deposit (n = 1);
- -
- Large rockslide deposit (n = 10);
- -
- Mature slope (vegetation cover ≥ 90%; n = 21);
- -
- Rockslide deposit (n = 1);
- -
- Talus slope (n = 6).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilardelli, F.; Sgorbati, S.; Armiraglio, S.; Citterio, S.; Gentili, R. Ecological Filtering and Plant Traits Variation across Quarry Geomorphological Surfaces: Implication for Restoration. Environ. Manag. 2015, 55, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, M. Global warning: Challenges, threats and opportunities for ground beetles (Coleoptera: Carabidae) in high altitude habitats. Acta Zoöl. Acad. Sci. Hung. 2020, 66, 5–20. [Google Scholar] [CrossRef]
- Beron, P. High-mountain Isopoda Oniscidea, Arachnida and Myriapoda in the Old World. Bureschiana, Sofia, Pensoft & Nat. Mus. Natur. Hist. Sofia 2008, 1, 556. [Google Scholar]
- Beron, P. High-altitude: Isopoda, Arachnida and Myriapoda in the New World. Sofia, Pensoft & Nat. Mus. Natur. Hist. Sofia 2008, 2, 556. [Google Scholar]
- Hågvar, S.; Gobbi, M.; Kaufmann, R.; Ingimarsdóttir, M.; Caccianiga, M.; Valle, B.; Pantini, P.; Fanciulli, P.P.; Vater, A. Ecosystem Birth Near Melting Glaciers: A Review on the Pioneer Role of Ground-Dwelling Arthropods. Insects 2020, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Viterbi, R.; Cerrato, C.; Bassano, B.; Bionda, R.; Von Hardenberg, A.; Provenzale, A.; Bogliani, G. Patterns of biodiversity in the northwestern Italian Alps: A multi-taxa approach. Community Ecol. 2013, 14, 18–30. [Google Scholar] [CrossRef]
- Staunton, K.M.; Nakamura, A.; Burwell, C.J.; Robson, S.K.A.; Williams, S.E. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia. PLoS ONE 2016, 11, e0155826. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, S.; Usio, N. Assemblage Characteristics and Habitat Specificity of Carabid Beetles in a Japanese Alpine-Subalpine Zone. Psyche A J. Èntomol. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Baranovská, E.; Tajovský, K.; Knapp, M. Changes in the Body Size of Carabid Beetles along Elevational Gradients: A Multispecies Study of Between- and Within-Population Variation. Environ. Èntomol. 2019, 48, 583–591. [Google Scholar] [CrossRef]
- Chamberlain, D.; Gobbi, M.; Negro, M.; Caprio, E.; Palestrini, C.; Pedrotti, L.; Brandmayr, P.; Pizzolotto, R.; Rolando, A. Trait-modulated decline of carabid beetle occurrence along elevational gradients across the European Alps. J. Biogeogr. 2020, 47, 1030–1040. [Google Scholar] [CrossRef]
- Ouisse, T.; Day, E.; Laville, L.; Hendrickx, F.; Convey, P.; Renault, D. Effects of elevational range shift on the morphology and physiology of a carabid beetle invading the sub-Antarctic Kerguelen Islands. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzolotto, R. Habitat diversity analysis along an altitudinal sequence of alpine habitats: The Carabid beetle assemblages as a study model. Period. Biol. 2016, 118, 241–254. [Google Scholar] [CrossRef]
- Bernasconi, M.G.; Borgatti, M.S.; Tognetti, M.; Valle, B.; Caccianiga, M.; Casarotto, C.; Ballarin, F.; Gobbi, M. Checklist ragionata della flora e degli artropodi (Coleoptera: Carabidae e Arachnida: Araneae) dei ghiacciai Centrale e Occidentale del Sorapiss (Dolomiti d’Ampezzo). Frammenti Conoscere e Tutelare la Natura Bellunese 2019, 9, 49–65. [Google Scholar]
- Soldati, M. Dolomites: The Spectacular Landscape of the ‘Pale Mountains’. In Geomorphological Landscapes of the World; Metzler, J.B., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 191–199. [Google Scholar]
- Zanoner, T.; Seppi, R.; Carton, A. Database Geomorfologico del Progetto BioMiti; Tecnical Report and Vector Data; Adamello Brenta Natural Park: Strembo, Italy, 2019. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Available online: http://qgis.osgeo.org,2020 (accessed on 10 February 2021).
- Clarke, K.R.; Warwick, R.M.; Pienkowski, M.W.; Watkinson, A.R.; Kerby, G. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 1998, 35, 523–531. [Google Scholar] [CrossRef]
- Gobbi, M.; Lencioni, V. Do carabids (Coleoptera: Carabidae) and chironomids (Diptera: Chironomidae) exhibit similar diversity and distributional patterns along a spatio-temporal gradient on a glacier foreland? J. Limnol. 2018, 77, 187–195. [Google Scholar] [CrossRef]
- Gobbi, M.; Ballarin, F.; Brambilla, M.; Compostella, C.; Isaia, M.; Losapio, G.; Maffioletti, C.; Seppi, R.; Tampucci, D.; Caccianiga, M. Life in harsh environments: Carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol. Èntomol. 2017, 42, 838–848. [Google Scholar] [CrossRef]
- Pesarini, C.; Monzini, V. Insetti della fauna italiana. Coleotteri Carabidi I. Società Italiana di Scienze Naturali 2010, 100, 152. [Google Scholar]
- Pesarini, C.; Monzini, V. Insetti della fauna italiana. Coleotteri Carabidi II. Società Italiana di Scienze Naturali 2011, 101, 144. [Google Scholar]
- Brandmayr, P.; Brandmayr, T.Z.; Pizzolotto, R. I Coleotteri Carabidi per la valutazione ambientale e la conservazione delle biodiversità. In Manuale Operativo, Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici; IGER: Rome, Italy, 2005; Volume 34, p. 240. [Google Scholar]
- Wayne, W.D. Kruskal-Wallis one-way analysis of variance by ranks. In Applied Nonparametric Statistics, 2nd ed.; Wayne, W.D., Ed.; Duxbury Classic Series: Boston, MA, USA, 1990; pp. 226–234. [Google Scholar]
- Theodorsson-Norheim, E. Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comput. Methods Programs Biomed. 1986, 23, 57–62. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Brandmayr, P.; Brandmayr, T.Z. Comunità a coleotteri carabidi delle Dolomiti Sudorientali e delle Prealpi Carniche. Zoocenosi e Paesaggio—I Le Dolomiti, Val di Fiemme-Pale di S. Martino (ed. by P. Brandmayr ). Studi Trent. Sci. Nat. Acta Biol. 1988, 64, 125–250. [Google Scholar]
- Valle, B.; Ambrosini, R.; Caccianiga, M.; Gobbi, M. Ecology of the cold-adapted species Nebria germari (Coleoptera: Carabidae): The role of supraglacial stony debris as refugium during the current interglacial period. Acta Zoöl. Acad. Sci. Hung. 2020, 66, 199–220. [Google Scholar] [CrossRef]
- Gobbi, M.; Fontaneto, D.; Bragalanti, N.; Pedrotti, L.; Lencioni, V. Carabid beetle (Coleoptera: Carabidae) richness and functional traits in relation to differently managed grasslands in the Alps. Annales de la Société entomologique de France (N.S.) 2015, 51, 52–59. [Google Scholar] [CrossRef]
- Crofts, R. Linking geoconservation with biodiversity conservation in protected areas. Int. J. Geoherit. Park. 2019, 7, 211–217. [Google Scholar] [CrossRef]
- Gobbi, M.; Caccianiga, M.; Compostella, C.; Zapparoli, M. Centipede assemblages (Chilopoda) in high-altitude landforms of the Central-Eastern Italian Alps: Diversity and abundance. Rendiconti Lincei Scienze Fisiche e Naturali 2020, 31, 1071–1087. [Google Scholar] [CrossRef]
Variables | Habitat Type | Landform Type |
---|---|---|
Species richness | 6.3; 0.09 | 12.3; 0.005 * |
Activity density | 14.2; 0.003 * | 19.2; 0.0002 * |
Taxonomic distinctness | 5.8; 0.09 | 8.7; 0.023 * |
BEP species | 13.4; 0.002 * | 10.9; 0.007 * |
CCA | Axis 1 | Axis 2 |
---|---|---|
Elevation | 0.882 | −0.025 |
Aspect | −0.006 | −0.360 |
Vegetation cover | −0.965 | 0.001 |
Eigenvalue | 0.912 | 0.096 |
% of explained variance | 90.5 | 9.5 |
p-value (999 permutation) | 0.001 * | 0.016 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobbi, M.; Armanini, M.; Boscolo, T.; Chirichella, R.; Lencioni, V.; Ornaghi, S.; Mustoni, A. Habitat and Landform Types Drive the Distribution of Carabid Beetles at High Altitudes. Diversity 2021, 13, 142. https://doi.org/10.3390/d13040142
Gobbi M, Armanini M, Boscolo T, Chirichella R, Lencioni V, Ornaghi S, Mustoni A. Habitat and Landform Types Drive the Distribution of Carabid Beetles at High Altitudes. Diversity. 2021; 13(4):142. https://doi.org/10.3390/d13040142
Chicago/Turabian StyleGobbi, Mauro, Marco Armanini, Teresa Boscolo, Roberta Chirichella, Valeria Lencioni, Simone Ornaghi, and Andrea Mustoni. 2021. "Habitat and Landform Types Drive the Distribution of Carabid Beetles at High Altitudes" Diversity 13, no. 4: 142. https://doi.org/10.3390/d13040142
APA StyleGobbi, M., Armanini, M., Boscolo, T., Chirichella, R., Lencioni, V., Ornaghi, S., & Mustoni, A. (2021). Habitat and Landform Types Drive the Distribution of Carabid Beetles at High Altitudes. Diversity, 13(4), 142. https://doi.org/10.3390/d13040142