Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt Modeling: A Conservation and Restoration Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Methodological Design
2.3. Geographical Records of Forest Species
2.4. Bioclimatic, Physiographic, and Soil Variables
2.5. Execution of the Model
2.6. Identification of Potential Areas for Restoration and Conservation
3. Results
3.1. Model Performance and the Importance of Environmental Variables
3.2. Potential Distribution of the Genus Cedrela
3.3. High-Priority Areas for Research, Conservation, and Restoration
4. Discussion
4.1. Potential Distribution of Genus Cedrela
4.2. Conservation and Restoration of Genus Cedrela
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruun, T.B.; Elberling, B.; de Neergaard, A.; Magid, J. Organic carbon dynamics in different soil types after conversion of forest to agriculture. L. Degrad. Dev. 2013, 26, 272–283. [Google Scholar] [CrossRef]
- Sánchez-Cuervo, A.M.; de Lima, L.S.; Dallmeier, F.; Garate, P.; Bravo, A.; Vanthomme, H. Twenty years of land cover change in the southeastern Peruvian Amazon: Implications for biodiversity conservation. Reg. Environ. Chang. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- GeoBosques Bosque y Pérdida de Bosque. Available online: http://geobosques.minam.gob.pe/geobosque/view/perdida.php (accessed on 25 February 2020).
- Flores, Y. Crecimiento y Productividad de Plantaciones Forestales en la Amazonía Peruana; Lima, Perú, 2010. [Google Scholar]
- Dourojeanni, R.M. Aprovechamiento del barbecho forestal en áreas de agricultura migratoria en la Amazonía peruana. Rev. For. Perú 2016, 14, 1–33. [Google Scholar] [CrossRef]
- Suárez de Freitas, G. Reducción de la Deforestación (Principalmente en la Amazonía) en el Contexto del Cambio Climático y de un Enfoque de Crecimiento Verde; MINAM: Lima, Perú, 2017. [Google Scholar]
- Marquardt, K.; Pain, A.; Bartholdson, Ö.; Rengifo, L.R. Forest dynamics in the Peruvian Amazon: Understanding processes of change. Small-Scale For. 2019, 18, 81–104. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, I. Las Poblaciones del Género Cedrela en el Perú; UNALM: Lima, Perú, 2014; ISBN 9786124147357. [Google Scholar]
- Escobal, J.; Aldana, U. Are nontimber forest products the antidote to rainforest degradation? Brazil nut extraction in Madre De Dios, Peru. World Dev. 2003, 31, 1873–1887. [Google Scholar] [CrossRef]
- Lamb, A.F.A. Fast Growing Timber Trees of the Lowland Tropics. Cedrela Odorata; Commonwealth Forestry Institute: Oxford, UK, 1968; Volume 2, p. 46. [Google Scholar]
- Cintrón, B.B. Cedrela odorata L. Cedro hembra, Spanish cedar. In Silvics of North America; United States Department of Agriculture (USDA): Washington, DC, USA, 1990; Volume 2, pp. 250–257. [Google Scholar]
- Navarro, C.; Montagnini, F.; Hernández, G. Genetic variability of Cedrela odorata Linnaeus: Results of early performance of provenances and families from Mesoamerica grown in association with coffee. For. Ecol. Manag. 2004, 192, 217–227. [Google Scholar] [CrossRef]
- Pennington, T.D.; Muellner, A.N. A Monograph of CEDRELA (Meliaceae), 1st ed.; DH Books: England, UK, 2010; ISBN 9780953813476. [Google Scholar]
- Palacios, W.A.; Santiana, J.; Iglesias, J. A new species of cedrela (Meliaceae) from the eastern flanks of ecuador. Phytotaxa 2019, 393, 84–88. [Google Scholar] [CrossRef]
- MINAM. Evaluación Dendrológica y Anatómica del las Especies del Género Cedrela; MINAM: Lima, Perú, 2017. [Google Scholar]
- SERFOR. Estado Situacional del Género Cedrela en el Perú; SERFOR: Lima, Perú, 2021. [Google Scholar]
- Rosser, A.; Haywood, M. Guidance for CITES Scientific Authorities; IUCN: Gland, Switzerland; Cambridge, UK, 2002. [Google Scholar]
- Cerrillo, R.M.N.; Agote, N.; Pizarro, F.; Ceacero, C.J.; Palacios, G. Elements for a non-detriment finding of Cedrela spp. in Bolivia-A CITES implementation case study. J. Nat. Conserv. 2013, 21, 241–252. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; Mcdonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.K.; Vogt, R.C.; De Marco Júnior, P. Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Divers. Distrib. 2016, 22, 123–135. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; ISBN 9780691136868. [Google Scholar]
- Cotrina, D.A.; Castillo, E.B.; Rojas, N.B.; Oliva, M.; Guzman, C.T.; Amasifuen, C.A.; Bandopadhyay, S. Distribution models of timber species for forest conservation and restoration in the Andean-Amazonian landscape, North of Peru. Sustainability 2020, 12, 7945. [Google Scholar] [CrossRef]
- Rojas, N.B.; Cotrina, D.A.; Castillo, E.B.; Oliva, M.; Salas, R. Current and future distribution of five timber forest species in Amazonas, Northeast Peru: Contributions towards a restoration strategy. Diversity 2020, 12, 305. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Naveda-Rodríguez, A.; Vargas, F.H.; Kohn, S.; Zapata-Ríos, G. Andean Condor (Vultur gryphus) in Ecuador: Geographic distribution, population size and extinction risk. PLoS ONE 2016, 11, e0151827. [Google Scholar] [CrossRef]
- Meza Mori, G.; Barboza Castillo, E.; Torres Guzmán, C.; Cotrina Sánchez, D.A.; Guzman Valqui, B.K.; Oliva, M.; Bandopadhyay, S.; Salas López, R.; Rojas Briceño, N.B. Predictive modelling of current and future potential distribution of the spectacled bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals 2020, 10, 1816. [Google Scholar] [CrossRef]
- Gilani, H.; Arif Goheer, M.; Ahmad, H.; Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020, 111, 106049. [Google Scholar] [CrossRef]
- Qin, A.; Liu, B.; Guo, Q.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017, 10, 139–146. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C. Fit-for-purpose: Species distribution model performance depends on evaluation criteria—Dutch Hoverflies as a case study. PLoS ONE 2013, 8, e63708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofaer, H.R.; Jarnevich, C.S.; Pearse, I.S.; Smyth, R.L.; Auer, S.; Cook, G.L.; Edwards, T.C.; Guala, G.F.; Howard, T.G.; Morisette, J.T.; et al. Development and delivery of species distribution models to inform decision-making. Bioscience 2019, 69, 544–557. [Google Scholar] [CrossRef]
- MINAM. Estudio para la Identificación de Áreas Degradadas y Propuesta de Monitoreo; MINAM: Lima, Perú, 2017. [Google Scholar]
- MINAM-SERNANP. Áreas Naturales Protegidas Del Perú (2011–2015)—Conservación para el Desarrollo Sostenible; MINAM-SERNANP: Lima, Perú, 2016; Volume 1. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hennig, T.A.; Kretsch, J.L.; Pessagno, C.J.; Salamonowicz, P.H.; Stein, W.L. The shuttle radar topography mission. Lect. Notes Comput. Sci. (Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2001, 2181, 65–77. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Stevens, G.C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar] [CrossRef]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 027–046. [Google Scholar] [CrossRef]
- Leroy, B.; Meynard, C.N.; Bellard, C.; Courchamp, F. virtualspecies, an R package to generate virtual species distributions. Ecography 2016, 39, 599–607. [Google Scholar] [CrossRef]
- Otieno, B.A.; Nahrung, H.F.; Steinbauer, M.J. Where did you come from? Where did you go? Investigating the origin of invasive Leptocybe species using distribution modelling. Forests 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Manel, S.; Williams, C.; Ormerod, S.J. Evaluating presence—Absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2001, 38, 921–931. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) Curve1. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, Y.; Tao, J. Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a maxent model. Forests 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Soberon, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005, 2, 3392–3396. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.; Reynoso, R.; Hernández, A.; García, X.; Hernández-Máximo, E.; Cob, J.; Sumano, D. Historical, current and future distribution of Cedrela odorata in Mexico. Acta Bot. Mex. 2018, 2018, 117–134. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species distribution modelling to support forest management. A literature review. Ecol. Modell. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Laurente, M. Modeling the effects of climate change on the distribution of Cedrela odorata L. “Cedro” in the Peruvian Amazon. Biologist 2015, 13, 213–224. [Google Scholar]
- Reynel, C.; Pennington, T.; Pennington, R.; Flores, C.; Daza, A. Árboles Útiles de la Amazonía Peruana y Sus Usos; Herbario de la Facultad de Ciencias Forestales de la Universidad Agraria La Molina, Royal Botanic Gardens Kew, Royal Botanic Gardens Edinburgh e ICRAF: Lima, Peru, 2003; ISBN 9972-9733-1-X. [Google Scholar]
- OSINFOR. Modelamiento Espacial de Nichos Ecológicos para la Evaluación de Presencia de Especies Forestales Maderables en la Amazonía Peruana; OSINFOR: Lima, Perú, 2013. [Google Scholar]
- Fajardo, J.; Lessmann, J.; Bonaccorso, E.; Devenish, C.; Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 2014, 9, e0122159. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.O.; Young, K.R. Biological diversity of Peru: Determining priority areas for conservation. Ambio 2000, 29, 329–337. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Estrella-Bastidas, A.; Molina, J.R.; Herrera, M.Á. Socioecological system and potential deforestation in Western Amazon forest landscapes. Sci. Total Environ. 2018, 644, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, I.; Barrena, V.; Huerta, P.; Carranza, J.; Vallejo, S. Propuesta Para la Recuperación de las Poblaciones de Cedrela spp. en el Perú; Universidad Nacional Agraria La Molina: Lima, Perú, (s.f.).
- Possingham, H.P.; Wilson, K.A. Protected Areas: Goals, Limitations, and Design. In Principies of Conservation Biology, 3rd ed.; Groom, M.J., Meffe, G.K., Carroll, C.R., Eds.; Sinauer Associates, lnc.: Sunderland, MA, USA, 2006. [Google Scholar]
- Romijn, E.; Lantican, C.B.; Herold, M.; Lindquist, E.; Ochieng, R.; Wijaya, A.; Murdiyarso, D.; Verchot, L. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manag. 2015, 352, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.; Pearson, R.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Godsoe, W.; Franklin, J.; Blanchet, F.G. Effects of biotic interactions on modeled species’ distribution can be masked by environmental gradients. Ecol. Evol. 2017, 7, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Lamont, B.B.; Connell, S.W. Biogeography of Banksia in southwestern australia. J. Biogeogr. 1996, 23, 295–309. [Google Scholar] [CrossRef]
- Sarmiento, F.O.; Kooperman, G.J. A Socio-hydrological perspective on recent and future precipitation changes over tropical montane cloud forests in the Andes. Front. Earth Sci. 2019, 7, 324. [Google Scholar] [CrossRef]
N° | Family | Genere | Species | Records Number |
---|---|---|---|---|
1 | Meliaceae | Cedrela | fissilis | 42 |
2 | kuelapensis | 16 | ||
3 | molinensis | 1 | ||
4 | montana | 30 | ||
5 | nebulosa | 32 | ||
6 | odorata | 787 | ||
7 | saltensis | 6 | ||
8 | angustifolia | 18 | ||
9 | longipetiolulata | 8 | ||
10 | weberbaueri | 7 | ||
Total | 947 |
Variable | Units | Symbol | Δ Earnings in Jackknife 1 | Clúster | |
---|---|---|---|---|---|
Bioclimatic | |||||
Annual Mean Temperature | °C | bio01 | 0.7379 | 1 | |
Mean Diurnal Range | °C | bio02 | 0.7627 | 7 | |
Isothermality | bio03 | 0.9150 | 4 | ||
Temperature Seasonality | °C | bio04 | 0.7097 | 9 | |
Max Temperature of Warmest Month | °C | bio05 | 0.6811 | 1 | |
Min Temperature of Coldest Month | °C | bio06 | 0.7068 | 1 | |
Annual Temperature Range | °C | bio07 | 0.7655 | 9 | |
Mean Temperature of Wettest Quarter | °C | bio08 | 0.7608 | 1 | |
Mean Temperature of Driest Quarter | °C | bio09 | 0.7107 | 1 | |
Mean Temperature of Warmest Quarter | °C | bio10 | 0.7606 | 1 | |
Mean Temperature of Coldest Quarter | °C | bio11 | 0.7067 | 1 | |
Annual Precipitation | mm | bio12 | 0.6231 | 3 | |
Precipitation of Wettest Month | mm | bio13 | 0.7674 | 2 | |
Precipitation of Driest Month | mm | bio14 | 0.5525 | 3 | |
Precipitation Seasonality | mm | bio15 | 0.6692 | 9 | |
Precipitation of Wettest Quarter | mm | bio16 | 0.7524 | 2 | |
Precipitation of Driest Quarter | mm | bio17 | 0.5481 | 3 | |
Precipitation of Warmest Quarter | mm | bio18 | 0.7915 | 2 | |
Precipitation of Coldest Quarter | mm | bio19 | 0.5147 | 3 | |
Topographic | |||||
Elevation above mean sea level | msnm | dem | 0.6709 | 7 | |
Slope of the terrain | ° | slope | 0.9104 | 7 | |
Cardinal orientation of the slope | ° | aspect | 1.0117 | 5 | |
Edaphic at 0.30 m | |||||
pH in H2O | pH × 10 | ph | 0.6543 | 7 | |
Cation exchange capacity | cmol kg−1 | cec | 0.7898 | 6 | |
Organic carbon | g kg−1 | soc | 0.8094 | 4 | |
Bulk density of the fine earth fraction | cg/cm3 | bdod | 0.8881 | 8 | |
Volumetric fraction of coarse fragments | cm3/dm3 (vol %) | cfvo | 0.7051 | 7 | |
Total nitrogen | cg/kg | nitrogen | 0.8375 | 6 | |
Clay content | % | clay | 0.8743 | 4 | |
Sand content | % | sand | 0.8155 | 7 | |
Slime content | % | silt | 0.7970 | 2 | |
Solar radiation | MJ m−2 day−1 | srad | 0.6801 | 9 | |
Relative humidity | % | rhm | 0.7777 | 3 |
Variable | Percent Contribution | Permutation Importance |
---|---|---|
bio19 | 51.3 | 19.7 |
soc | 18.3 | 6 |
dem | 6.9 | 25.8 |
cec | 6.5 | 2.3 |
bio12 | 4.6 | 19.2 |
bio04 | 3.7 | 9.1 |
ph | 2.6 | 4.6 |
aspect | 1.3 | 1.1 |
slope | 1.3 | 1.2 |
sand | 1.3 | 4.7 |
silt | 0.9 | 4 |
bdod | 0.7 | 1.1 |
nitrogen | 0.7 | 1.1 |
Region/Country | Geographic Area km2 | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | ||
Amazonas | 39,306.46 | 12,692.78 | 32.3 | 6339.41 | 16.1 | 1925.42 | 4.9 |
Ancash | 35,962.25 | 7.18 | 0 | 0.16 | 0 | 0.00 | 0 |
Apurimac | 21,114.18 | 1719.01 | 8.1 | 476.60 | 2.3 | 148.55 | 0.7 |
Ayacucho | 43,503.84 | 1150.37 | 2.6 | 1306.67 | 3 | 985.08 | 2.3 |
Cajamarca | 33,044.68 | 8512.56 | 25.8 | 4444.75 | 13.5 | 1140.41 | 3.5 |
Cusco | 72,076.2 | 15,217.89 | 21.1 | 11,450.66 | 15.9 | 5145.99 | 7.1 |
Huancavelica | 22,065.07 | 444.75 | 2 | 260.12 | 1.2 | 194.12 | 0.9 |
Huánuco | 37,200.53 | 12,279.44 | 33 | 2274.37 | 6.1 | 867.62 | 2.3 |
Junín | 43,997.3 | 11,298.72 | 25.7 | 8212.08 | 18.7 | 3340.96 | 7.6 |
La Libertad | 25,295.94 | 1025.67 | 4.1 | 270.80 | 1.1 | 39.08 | 0.2 |
Lambayeque | 14,342.31 | 294.65 | 2.1 | 20.76 | 0.1 | 0.19 | 0 |
Loreto | 375,115.94 | 161,464.72 | 43 | 53,151.91 | 14.2 | 22,842.30 | 6.1 |
Madre De Dios | 85,045.87 | 34,710.95 | 40.8 | 20,326.56 | 23.9 | 20,755.70 | 24.4 |
Pasco | 24,113.95 | 10,797.92 | 44.8 | 4771.88 | 19.8 | 979.54 | 4.1 |
Piura | 36,065.1 | 1953.37 | 5.4 | 225.54 | 0.6 | 14.43 | 0 |
Puno | 67,962.79 | 8270.85 | 12.2 | 3048.19 | 4.5 | 947.78 | 1.4 |
San Martin | 50,961.26 | 23,558.38 | 46.2 | 13,728.27 | 26.9 | 4267.01 | 8.4 |
Tumbes | 4690.28 | 122.44 | 2.6 | 0.00 | 0 | 0.00 | 0 |
Ucayali | 105,341.77 | 38,186.29 | 36.2 | 32,564.53 | 30.9 | 23,322.04 | 22.1 |
Peru | 1,288,564.27 | 343,708 | 26.7 | 16,2873 | 12.6 | 86,916.2 | 6.7 |
PNA Modalities | Geographic Area (km2) | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | ||
Reserved Zone | 6257.55 | 1799.22 | 28.8 | 358.28 | 5.7 | 85.18 | 1.4 |
Regional Conservation Areas | 33,253.79 | 16,206.54 | 48.7 | 4309.78 | 13.0 | 1020.71 | 3.1 |
Private Conservation Areas | 3963.05 | 764.34 | 19.3 | 536.13 | 13.5 | 154.68 | 3.9 |
National sanctuary | 3173.66 | 1169.43 | 36.8 | 1226.79 | 38.7 | 130.76 | 4.1 |
Historic Sanctuary | 412.79 | 50.46 | 12.2 | 31.67 | 7.7 | 20.18 | 4.9 |
Wildlife Refuge | 207.75 | 44.25 | 21.3 | 20.11 | 9.7 | 0.13 | 0.1 |
National Reserve | 46,528.52 | 15,987.96 | 34.4 | 9005.68 | 19.4 | 2323.46 | 5.0 |
Communal Reserve | 21,665.88 | 7247.05 | 33.4 | 5636.40 | 26.0 | 1023.63 | 4.7 |
National Park | 103,943.67 | 53,959.42 | 51.9 | 21,151.83 | 20.3 | 5000.93 | 4.8 |
Hunting | 1247.35 | 7.51 | 0.6 | 0.00 | 0.0 | 0.00 | 0.0 |
Protection Forest | 3899.87 | 1563.68 | 40.1 | 1175.82 | 30.2 | 411.37 | 10.5 |
PNA Peru | 231,672.07 | 98,799.85 | 42.6 | 43,452.49 | 18.8 | 10,171.03 | 4.4 |
Region | Degraded Area (km2) | Low | Moderate | High | Total | ||||
---|---|---|---|---|---|---|---|---|---|
Km2 | % | Km2 | % | Km2 | % | Km2 | % | ||
Amazonas | 11,210 | 3758.4 | 33.5 | 2186.62 | 19.5 | 881.56 | 7.9 | 6826.58 | 60.9 |
Apurimac | 146.36 | 10.93 | 7.5 | 4.58 | 3.1 | 2.05 | 1.4 | 17.56 | 12.0 |
Ayacucho | 1983.93 | 444.99 | 22.4 | 601.95 | 30.3 | 450.5 | 22.7 | 1497.44 | 75.5 |
Cajamarca | 3254.27 | 1013.86 | 31.2 | 927.43 | 28.5 | 359.49 | 11.0 | 2300.78 | 70.7 |
Cusco | 14,955.42 | 5001.71 | 33.4 | 4241.09 | 28.4 | 2622.01 | 17.5 | 11,864.81 | 79.3 |
Huancavelica | 255.84 | 62.53 | 24.4 | 34.26 | 13.4 | 34.1 | 13.3 | 130.89 | 51.2 |
Huanuco | 12,492.15 | 6630.71 | 53.1 | 1057.65 | 8.5 | 487.87 | 3.9 | 8176.23 | 65.5 |
Junin | 12,312.95 | 5537.25 | 45.0 | 3807.1 | 30.9 | 1449.93 | 11.8 | 10,794.28 | 87.7 |
La Libertad | 1430 | 173.07 | 12.1 | 115.79 | 8.1 | 19.68 | 1.4 | 308.54 | 21.6 |
Lambayeque | 1169.75 | 5.29 | 0.5 | 0.04 | 0.0 | 0 | 0.0 | 5.33 | 0.5 |
Loreto | 45,320.82 | 19,959.46 | 44.0 | 8105.48 | 17.9 | 3635.89 | 8.0 | 31,700.83 | 69.9 |
Madre de Dios | 16,224 | 4671.55 | 28.8 | 3127.58 | 19.3 | 5604.83 | 34.5 | 13,403.96 | 82.6 |
Pasco | 7317.36 | 4689.39 | 64.1 | 1394.6 | 19.1 | 494.75 | 6.8 | 6578.74 | 89.9 |
Piura | 2890.04 | 215.5 | 7.5 | 40.47 | 1.4 | 6.45 | 0.2 | 262.42 | 9.1 |
Puno | 6561.03 | 7.64 | 0.1 | 17.85 | 0.3 | 15.47 | 0.2 | 40.96 | 0.6 |
San Martin | 20,356.17 | 3530.22 | 17.3 | 3328.42 | 16.4 | 1621.72 | 8.0 | 8480.36 | 41.7 |
Tumbes | 256.35 | 12.59 | 4.9 | 0 | 0.0 | 0 | 0.0 | 12.59 | 4.9 |
Ucayali | 21,792.53 | 8418.18 | 38.6 | 5072.2 | 23.3 | 3170.73 | 14.5 | 16,661.11 | 76.5 |
Peru | 183,288.15 | 64,143.3 | 35.0 | 34,063.1 | 18.6 | 20,857 | 11.4 | 11,9063.4 | 65.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotrina Sánchez, A.; Rojas Briceño, N.B.; Bandopadhyay, S.; Ghosh, S.; Torres Guzmán, C.; Oliva, M.; Guzman, B.K.; Salas López, R. Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt Modeling: A Conservation and Restoration Approach. Diversity 2021, 13, 261. https://doi.org/10.3390/d13060261
Cotrina Sánchez A, Rojas Briceño NB, Bandopadhyay S, Ghosh S, Torres Guzmán C, Oliva M, Guzman BK, Salas López R. Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt Modeling: A Conservation and Restoration Approach. Diversity. 2021; 13(6):261. https://doi.org/10.3390/d13060261
Chicago/Turabian StyleCotrina Sánchez, Alexander, Nilton B. Rojas Briceño, Subhajit Bandopadhyay, Subhasis Ghosh, Cristóbal Torres Guzmán, Manuel Oliva, Betty K. Guzman, and Rolando Salas López. 2021. "Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt Modeling: A Conservation and Restoration Approach" Diversity 13, no. 6: 261. https://doi.org/10.3390/d13060261
APA StyleCotrina Sánchez, A., Rojas Briceño, N. B., Bandopadhyay, S., Ghosh, S., Torres Guzmán, C., Oliva, M., Guzman, B. K., & Salas López, R. (2021). Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt Modeling: A Conservation and Restoration Approach. Diversity, 13(6), 261. https://doi.org/10.3390/d13060261