A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javor, B.J. Planktonic standing crop and nutrients in a saltern ecosystem 1. Limnol. Oceanogr. 1983, 28, 153–159. [Google Scholar] [CrossRef]
- Wen, Z.; Zhi-Hui, H. Biological and ecological features of inland saline waters in North Hebei, China. Int. J. Salt Lake Res. 1999, 8, 267–285. [Google Scholar] [CrossRef]
- Davis, S.J. Biological and physical management information for commercial solar saltworks. In Proceedings of the 1st Intern Conf. Ecological Importance of Solar Saltworks (CEISSA 06), Santorini, Greece, 20–22 October 2006; pp. 5–14. [Google Scholar]
- Borowitzka, M.A. Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 1997, 9, 393–401. [Google Scholar] [CrossRef]
- DasSarma, S.; Arora, P. Halophiles. In Encyclopedia of Life Sciences; Nature Publ. Group: London, UK, 2002; Volume 8, pp. 458–466. [Google Scholar]
- Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Caporaso, J.G.; Walker, J.J.; Spear, J.; Gold, N.J.; Robertson, C.; Hugenholtz, P.; Goodrich, J.; McDonald, D.; Knights, D.; et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 2012, 7, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Podell, S.; Ugalde, J.A.; Narasingarao, P.; Banfield, J.F.; Heidelberg, K.; Allen, E.E. Assembly-Driven Community Genomics of a Hypersaline Microbial Ecosystem. PLoS ONE 2013, 8, e61692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A. A hundred years of Dunaliella research: 1905–2005. Saline Syst. 2005, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.A.; Polle, J.; Tran, D.; Cushman, J.C.; Jin, E.-S.; Varela, J.C. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: Genetic advances and future perspectives. Algae 2011, 26, 3–20. [Google Scholar] [CrossRef]
- Camara, M.R. Dispersal of Artemia franciscana Kellogg (Crustacea, Anostraca) Populations in the Coastal Saltworks of Rio Grande do Norte, Northeastern Brazil. Hydrobiologia 2001, 466, 145–148. [Google Scholar]
- Saygi, Y. Characterization of the parthenogenic Artemia populations from Camalti (Izmir, Turkey) and Kalloni (Lesvos, Greece). Survival, growth, maturation, biometrics, fatty acid profiles and hatching characteristics. Hydrobiologia 2004, 52, 227–239. [Google Scholar] [CrossRef]
- Dolapsakis, P.N.; Tafas, T.; Abatzopoulos, J.T.; Ziller, S.; Economou-Amilli, A. Abundance and growth response of micro-algae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. J. Appl. Phycol. 2005, 17, 39–49. [Google Scholar] [CrossRef]
- Sournia, A. Atlas du Phytoplankton Marin. Cyanophycées, Dictyochophycées, Dinophycées, Raphidophycées; CNRS: Paris, France, 1986; p. 219. [Google Scholar]
- Ricard, M. Atlas du Phytoplankton Marin. Diatomophycées; CNRS: Paris, France, 1987; p. 297. [Google Scholar]
- Foissner, W.; Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 1996, 35, 375–482. [Google Scholar] [CrossRef]
- Tomas, C.R. Identifying marine Diatoms and Dinoflagellates; Academic Press: San Diego, CA, USA, 1996; 565p. [Google Scholar]
- Lee, J.; Leedale, G.; Bradbury, P. An Illustrated Guide to the Protozoa, Volumes I & II; Society of the Protozoologists: Law-Rence, KS, USA, 2000; pp. 1–1432. [Google Scholar]
- Fontaneto, D.; De Smet, H.W.; Melone, G. Identification key to the genera of marine rotifers worldwide. In Meiofauna Marina; Verlag, Dr. Friedrich Pfeil: München, Germany, 2008; Volume 16, pp. 75–99. [Google Scholar]
- Basuri, C.K.; Pazhaniyappan, E.; Munnooru, K.; Chandrasekaran, M.; Vinjamuri, R.R.; Karri, R.; Mallavarapu, R.V. Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India). Environ. Sci. Pollut. Res. 2020, 27, 18303–18316. [Google Scholar] [CrossRef] [PubMed]
- Shadrin, N.V.; Anufriieva, E.V. Structure and Trophic Relations in Hypersaline Environments. Biol. Bull. Rev. 2020, 10, 48–56. [Google Scholar] [CrossRef]
- Esteban, F.G.; Finlay, J.B. Marine ciliates (Protozoa) in central Spain. Ophelia 2004, 58, 13–22. [Google Scholar] [CrossRef]
- Hotos, G. Feeding with various microalgae the salt “loving” ciliate Fabrea salina in normal salinity 35 ppt. J. Sci. Food Agric. 2019, 3, 150–152. [Google Scholar] [CrossRef]
- Korovesis, A.K.; Hotos, G.; Zalidis, G. The role of the ciliate protozoan Fabrea salina in solar salt production. In Proceedings of the 10th World Salt Symposium, Park City, UT, USA, 19–21 June 2018. [Google Scholar]
- Avron, M.; Ben-Amotz, A. (Eds.) Dunaliella: Physiology, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 1992; 256p. [Google Scholar]
- Hotos, G.N. A Short Review on the Halotolerant Green Microalga Asteromonas gracilis Artari with Emphasis on Its Uses. Asian J. Fish. Aquat. Res. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Anufriieva, E.; Shadrin, N. The long-term changes in plankton composition: Is Bay Sivash transforming back into one of the world’s largest habitats of Artemia sp. (Crustacea, Anostraca)? Aquac. Res. 2020, 51, 341–350. [Google Scholar] [CrossRef]
- Foissner, W. Protist diversity and distribution: Some basic considerations. Biodivers. Conserv. 2007, 17, 235–242. [Google Scholar] [CrossRef]
Salinity Range (ppt) | 50–80 | 81–110 | 111–130 | 131–160 | >160 | Culture Response |
---|---|---|---|---|---|---|
CYANOBACTERIA | ||||||
Synechococcus | +++ | ++++ | ++++ | + | + | 1×–2× |
Aphanothece | ++ | +++ | ++++ | + | - | 0 |
Microcystis | ++++ | +++ | ++ | - | - | 0 |
Cyanothece | + | ++ | ++++ | +++ | + | 3×–4× |
Oscillatoria | ++++ | +++ | ++ | - | - | 1×–2× |
Lyngbya | ++++ | ++ | + | - | - | 0 |
Aphanizomenon | +++ | ++++ | ++ | - | - | |
Cylindrospermopsis | ++ | +++ | + | + | - | |
Anabaena | +++ | + | - | - | - | 1×–2× |
Arthrospira | +++ | ++++ | ++++ | ++ | - | 1×–2× |
Beggiatoa | ++ | + | - | - | - | |
Scytonema | ++ | + | - | - | - | |
Prochlorothrix | + | - | - | - | - | |
Microcoleus | + | - | - | - | - | |
Tychonema | + | - | - | - | - | |
Pseudoanabaena | ++ | + | - | - | - | |
Phormidium | ++++ | + | - | - | - | >4× |
PROTOZOA | ||||||
Euplotes | ++++ | ++++ | ++ | + | - | >4× |
Uronychia | ++++ | + | - | - | - | 1×–2× |
Diophrys | ++++ | + | - | - | - | |
Frontonia | ++++ | ++ | + | - | - | 0 |
Dysteria | + | |||||
Aspidisca | ++++ | ++++ | ++ | - | - | |
Paramecium | ++++ | ++ | - | - | - | 1×–2× |
Euglena | ++ | - | - | - | - | 1×–2× |
Paraurostyla | +++ | ++ | + | - | - | |
Colpoda | ++++ | +++ | ++ | - | - | |
Coleps | ++ | - | - | - | - | 1×–2× |
Amphileptus | +++ | + | + | - | - | |
Condylostoma | ++++ | +++ | ++ | + | - | 2×–3× |
Amoeba | ++++ | ++++ | ++ | + | - | 2×–3× |
Holophrya | ++++ | ++ | + | + | - | |
Halteria | ++ | + | - | - | - | 0 |
Pleuronema | ++++ | ++ | ++ | + | - | 1×–2× |
Cyclidium | ++++ | ++++ | +++ | ++ | - | 2×–3× |
Loxodes | ++ | ++ | + | - | - | |
Litonotus | ++ | + | + | - | - | 1×–2× |
Chaetospira | +++ | + | + | + | - | |
Stichotria | +++ | + | + | - | - | |
Bursaridium | ++ | +++ | - | - | - | |
Climacostomum | ++++ | +++ | ++ | + | - | |
Blepharisma | ++++ | +++ | ++ | - | - | |
Holosticha | ++++ | ++ | + | - | - | |
Vorticella | ++++ | +++ | ++ | + | - | 2×–3× |
Remanella | ++++ | ++ | + | + | - | |
Lembandion | ++ | - | - | - | - | |
Strobidium | ++ | + | - | - | - | |
Uronema | ++++ | ++++ | ++ | + | - | |
Bursaria | ++ | - | - | - | - | |
Tracheloraphis | ++ | - | - | - | - | |
Lacrymaria | + | - | - | - | - | |
Hemiophrys | ++ | + | - | - | - | |
Fabrea salina | ++++ | ++++ | ++++ | ++++ | ++ | >4× |
Dileptus | ++++ | + | - | - | - | |
Colpodella | ++++ | +++ | ++ | - | - | 2×–3× |
Phialina | +++ | ++ | + | - | - | |
Choanoflagellates | ++ | + | - | - | - | |
MICROALGAE (Chlorophytes) | ||||||
Asteromonas gracilis | ++ | ++++ | ++++ | ++++ | ++++ | >4× |
Dunaliella | ++++ | ++++ | ++++ | ++++ | ++++ | >4× |
Tetraselmis marina | ++ | ++++ | +++ | + | - | 2×–3× |
Hymenomonas | ++++ | ++ | - | - | - | 0 |
MICROALGAE (Diatoms) | ||||||
Cymbella | ++++ | +++ | +++ | + | - | 1×–2× |
Caloneis | ++ | + | - | - | - | |
Cyclotella | ++++ | + | - | - | - | 3×–4× |
Craticula | ++ | + | - | - | - | |
Navicula | ++++ | ++++ | +++ | ++ | - | |
Nitzschia | ++++ | ++++ | ++++ | +++ | - | >4× |
Pleurosigma | ++++ | +++ | ++ | - | - | |
Entomoneis | +++ | + | - | - | - | |
Encyonema | ++ | + | - | - | - | |
Ulnaria | + | - | - | - | - | |
Pinnularia | ++ | + | - | - | - | |
Surinella | + | + | - | - | - | |
Neidium | ++ | - | - | - | - | |
Synendra | ++++ | ++ | + | + | - | |
Stauroneis | + | + | - | - | - | |
Gyrosigma | ++++ | ++ | + | - | - | 2×–3× |
Amphiprora | + | - | - | - | - | |
Eunotia | ++ | - | - | - | - | |
Epithemia | + | - | - | - | - | |
Diatoma | + | - | - | - | - | |
Cymatopleura | ++ | - | - | - | - | |
Cocconeis | ++++ | + | + | - | - | 2×–3× |
Cylindrotheca | ++ | ++ | + | + | - | 1×–2× |
DINOFLAGELLATES | ||||||
Gymnodinium | ++++ | ++ | - | - | - | |
ROTIFERS | ||||||
Hexarthra | ++ | - | - | - | - | 0 |
Pleurotrocha | ++++ | + | - | - | - | |
Epiphanes | ++ | - | - | - | - | 0 |
Encentrum | +++ | - | - | - | - | |
Lindia | ++++ | +++ | - | - | - | 0 |
Colurella | +++ | ++ | - | - | - | |
Testudinella | ++ | + | - | - | - | 1×–2× |
Brachionus plicatilis | ++ | - | - | - | - | >4× |
COPEPODS | ||||||
Tisbe | ++++ | +++ | - | - | - | >4× |
ANOSTRACA | ||||||
Artemia | ++++ | ++++ | ++++ | ++++ | ++++ | >4× |
NEMATODE | ||||||
Mesacanthoides | ++++ | ++++ | + | + | - | >4× |
FUNGI | ||||||
Alternaria | + | + | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotos, G.N. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity 2021, 13, 270. https://doi.org/10.3390/d13060270
Hotos GN. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity. 2021; 13(6):270. https://doi.org/10.3390/d13060270
Chicago/Turabian StyleHotos, George N. 2021. "A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece)" Diversity 13, no. 6: 270. https://doi.org/10.3390/d13060270
APA StyleHotos, G. N. (2021). A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity, 13(6), 270. https://doi.org/10.3390/d13060270