Effects of the Habitat and Genotype on Osteological Traits in Landlocked and Anadromous Ecological Forms of Atlantic Salmon Salmo salar Linnaeus, 1758
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chernova:, N.V. Distribution patterns and chorological analysis of fish fauna of the Arctic region. J. Ichthyol. 2011, 51, 825–924. [Google Scholar] [CrossRef]
- Chalant, A.; Jézéquel, C.; Keith, P.; Hugueny, B. The global geography of fish diadromy modes. Global Ecol. Biogeogr. 2019, 28, 1272–1282. [Google Scholar] [CrossRef]
- Makhrov, A.A.; Artamonova, V.S. Instability Stabilized: Mechanisms of Evolutionary Stasis and Genetic Diversity Accumulation in Fishes and Lampreys from Environments with Unstable Abiotic Factors. Contemp. Probl. Ecol. 2020, 13, 370–381. [Google Scholar] [CrossRef]
- Spielhagen, R.F.; Bauch, H.A. The role of Arctic Ocean freshwater during the past 200 ky. Arktos 2015, 1, 18. [Google Scholar] [CrossRef]
- Geibert, W.; Matthiessen, J.; Stimac, I.; Wollenburg, J.; Stein, R. Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature 2021, 590, 97–106. [Google Scholar] [CrossRef]
- Zenkewitsch, L. Beiträge zur Zoogeographie des Nördlichen Polarbassins im Zusammenhang mit der frage über dessen paläogeographische Vergangenheit (in Russian, Summary in German). Zool. J. 1933, 12, 17–34. [Google Scholar]
- Guryanova, E. On the question of the composition and origin of the Fauna of the Polar Basin bassalia. Comptes Rendus De L’academie Des Sci. De L’urss 1938, 20, 333–336. [Google Scholar]
- Artamonova, V.S.; Bolotov, I.N.; Vinarski, M.V.; Makhrov, A.A. Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic. Water 2021, 13, 1161. [Google Scholar] [CrossRef]
- Bell, M.A.; Andrews, C.A. Evolutionary consequences of postglacial colonization of fresh water by primitively anadromous fishes. In Evolutionary Ecology of Freshwater Animals; Streit, B., Städler, T., Lively, C.M., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1997; pp. 323–363. [Google Scholar]
- Schluter, D. The Ecology of Adaptive Radiation; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Hendry, A.P.; Stearns, S.C. (Eds.) Evolution Illuminated. Salmon and Their Relatives; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gause, G.F. The effect of natural selection in the acclimatization of Euplotes to different salinities of the medium. J. Exp. Zool. 1941, 87, 85–100. [Google Scholar] [CrossRef]
- Bell, M.A.; Foster, S.A. (Eds.) The Evolutionary Biology of the Threespine Stickleback; Oxford University Press: New York, NY, USA; Tokyo, Japan, 1994. [Google Scholar]
- Gibson, G. The synthesis and evolution of a supermodel. Science 2005, 307, 1890–1891. [Google Scholar] [CrossRef]
- Hendry, A.P.; Bolnick, D.I.; Berner, D.; Peichel, C.L. Along the speciation continuum in sticklebacks. J. Fish Biol. 2009, 75, 2000–2036. [Google Scholar] [CrossRef] [PubMed]
- McCairns, R.J.S.; Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 2012, 25, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Mazzarella, A.B.; Voje, K.L.; Hansson, T.H.; Taugbøl, A.; Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 2015, 28, 667–677. [Google Scholar] [CrossRef]
- Artemov, A.V.; Mugue, N.S.; Rastorguev, S.M.; Zhenilo, S.; Mazur, A.M.; Tsygankova, S.T.; Boulygina, E.S.; Kaplun, D.; Nedoluzhko, A.V.; Medvedeva, Y.A.; et al. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions. Mol. Biol. Evol. 2017, 34, 2203–2213. [Google Scholar] [CrossRef] [PubMed]
- Taugbøl, A.; Quinn, T.P.; Østbye, K.; Vøllestad, L.A. Allometric relationships in morphological traits associated with foraging, swimming ability, and predator defense reveal adaptations toward brackish and freshwater environments in the threespine stickleback. Ecol. Evol. 2020, 10, 13412–13426. [Google Scholar] [CrossRef]
- Kuzishchin, K.V.; Gruzdeva, M.A.; Pichugin, M.Y.; Pavlov, D.S. Features of the Changes in External Morphology and Axial Skeleton in Juvenile Salmonid Fishes (Salmonidae) Associated with Smoltification. J. Ichthyol. 2019, 59, 664–679. [Google Scholar] [CrossRef]
- Borovikova, E.A.; Kodukhova, J.V.; Semenova, A.V. Phenotypic Plasticity and Allometry of Craniological Characters of Anadromous and Lacustrine Forms of Whitefish Coregonus lavaretus (Linnaeus, 1758) as an Indication of the Wrong Species Status of Coregonus pidschian. Contemp. Probl. Ecol. 2020, 13, 620–630. [Google Scholar] [CrossRef]
- Borovikova, E.A.; Artamonova, V.S. Vendace (Coregonus albula) and least cisco (Coregonus sardinella) are a single species: Evidence from revised data on mitochondrial and nuclear DNA polymorphism. Hydrobiologia 2021, 848, 4241–4262. [Google Scholar] [CrossRef]
- Young, A.L.; Tallman, R.F.; Ogle, D.H. Life history variation in Arctic charr (Salvelinus alpinus) and the effects of diet and migration on the growth, condition, and body morphology of two Arctic charr populations in Cumberland Sound, Nunavut, Canada. Arct. Sci. 2021, 7, 436–453. [Google Scholar] [CrossRef]
- Kozhara, A.V. Regular phenotypic changes accompanying osmotic adaptations in some cyprinids: Micro vs. macroevolution. J. Gen. Biol. 1997, 58, 17–26. [Google Scholar]
- Mironovsky, A.N.; Mavrin, A.S.; Kozhara, A.V.; Slyn’ko, Y.V. Salinity Factor in the Microevolution of Fishes and Redistribution of Age Groups of Altai Osman Oreoleuciscus potanini (Cyprinidae) in Ayrag and Khyargas Lakes, Mongolia. Russ. J. Ecol. 2019, 50, 307–309. [Google Scholar] [CrossRef]
- Pakkasmaa, S.; Piironen, J. Morphological differentiation among local trout (Salmo trutta) populations. Biol. J. Linn. Soc. 2001, 72, 231–239. [Google Scholar] [CrossRef]
- Makhrov, A.A.; Ponomareva, M.V.; Khaimina, O.V.; Gilepp, V.E.; Efimova, O.V.; Nechaeva, T.A.; Vasilenkova, T.I. Abnormal Development of Gonads of Dwarf Females and Low Survival of their Offspring as the Cause of Rarity of Resident Populations of Atlantic Salmon (Salmo salar L.). Russ. J. Dev. Biol. 2013, 44, 326–335. [Google Scholar] [CrossRef]
- Zelinsky, Y.P. A structure and a differentiation of Atlantic salmon populations and forms; (in Russian). Nauka: Leningrad, 1985. [Google Scholar]
- Verspoor, E.; Stradmeyer, L.; Nielsen, J.L. (Eds.) The Atlantic Salmon. Genetics, Conservation and Management; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Aas, Ø.; Einum, S.; Klemetsen, A.; Skurdal, J. (Eds.) Atlantic Salmon Ecology; Wiley-Blackwell: Oxford, 2011. [Google Scholar]
- Jonsson, B.; Jonsson, N. Ecology of Atlantic Salmon and Brown Trout. Habitat as a Template for Life Histories; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Hutchings, J.A.; Ardren, W.R.; Barlaup, B.T.; Bergman, E.; Clarke, K.D.; Greenberg, L.A.; Lake, C.; Piironen, J.; Sirois, P.; Sundt-Hansen, L.E.; et al. Life-History variability and conservation status of landlocked Atlantic salmon: An overview. Can. J. Fish. Aquat. Sci. 2019, 76, 1697–1708. [Google Scholar] [CrossRef]
- Lajus, D.L.; Knust, R.; Brix, O. Fluctuating asymmetry and other parameters of morphological variation of eelpout Zoarces viviparus from different parts of distributional range. Sarsia 2003, 88, 247–260. [Google Scholar] [CrossRef]
- Lajus, D.; Yurtseva, A.; Birch, G.; Booth, D. Fluctuating asymmetry as a pollution monitor: The Australian estuarine smooth toadfish Tetractenos glaber (Teleostei: Tetraodontidae). Mar. Pollut. Bull. 2015, 101, 758–767. [Google Scholar] [CrossRef]
- Lajus, D.L.; Golovin, P.V.; Yurtseva, A.O.; Ivanova, T.S.; Dorgham, A.S.; Ivanov, M.V. Fluctuating asymmetry as an indicator of stress and fitness in stickleback: Analysis of publications and testing cranial structures. Evol. Ecol. Res. 2019, 20, 83–106. [Google Scholar]
- Yurtseva, A. Intraspecific morphological heterogenicity of Atlantic salmon in the wild and aquaculture. In Salmon. Biology, Ecological Impacts and Economic Importance; Woo, P.T.K., Noakes, D.J., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 23–45. [Google Scholar]
- Yurtseva, A.; Lajus, D.; Artamonova, V.; Makhrov, A. Effect of hatchery environment on cranial morphology and developmental stability of Atlantic salmon (Salmo salar L.) from North-West Russia. J. Appl. Ichthyol. 2010, 26, 307–314. [Google Scholar] [CrossRef]
- Smirnov, Y.A. The Salmon of Lake Onega. Biology-Reproduction-Utilization; Fisheries Research Board of Canada: Namaimo, BC, Canada, 1972; Translation Series No.2137; Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/28527.pdf (accessed on 10 August 2022).
- Artamonova, V.S.; Makhrov, A.A.; Shulman, B.S.; Khaimina, O.V.; Yurtseva, A.O.; Lajus, D.L.; Shirokov, V.A.; Shurov, I.L. Response of the Atlantic Salmon (Salmo salar L.) Population of the Keret River to the Invasion of Parasite Gyrodactylus salaris Malmberg. Russ. J. Biol. Invasions 2011, 2, 73–80. [Google Scholar] [CrossRef]
- Artamonova, V.S.; Makhrov, A.A.; Popova, E.K. Unintentional Selection in Captive Broodstocks Intended for Restoring Natural Populations: Description of the Phenomenon and a Novel Method of Controlling It. In Stream Restoration: Halting Disturbances, Assisted Recovery and Managed Recovery; Hayes, G.D., Flores, T.S., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 149–160. [Google Scholar]
- Yurtseva, A.; Lajus, D.; Makhrov, A.; Artamonova, V. Atlantic salmon (Salmo salar L.) in the border of distribution range: Patterns of osteological variation. J. Appl. Ichthyol. 2014, 30, 721–727. [Google Scholar] [CrossRef]
- Marić, S.; Nikolić, V.; Tomović, L.; Simonović, P. Morphological differentiation of trout (subf. Salmoninae) based on characteristics of head skeleton. Ital. J. Zool. 2011, 78, 455–463. [Google Scholar] [CrossRef]
- Dorofeyeva, E.A. Morphological characters of lake forms of salmonid fishes of the genera Salmo and Oncorhynchus (Pisces: Salmonidae). Proc. Zool. Inst. RAS 2008, 312, 114–126. [Google Scholar]
- Peng, J.; Larondelle, Y.; Pham, D.; Ackman, R.G.; Rollin, X. Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Phys. B 2003, 134, 335–348. [Google Scholar] [CrossRef]
- Burton, M.P.; Idler, D.R. Can Newfoundland landlocked salmon, Salmo salar L., adapt to sea water? J. Fish Biol. 1984, 24, 59–64. [Google Scholar] [CrossRef]
- Chernitsky, A.G. Quantitative evaluation of the degree of parr-smolt transformation in wild smolts and hatchery juveniles of Atlantic salmon (Salmo salar L.) by SDH activity of chloride cells. Aquaculture 1986, 59, 287–297. [Google Scholar] [CrossRef]
- Birt, T.P.; Green, J.M. Acclimation to seawater of dwarf non-anadromous Atlantic salmon, Salmo salar. Can. J. Zool. 1993, 71, 1912–1916. [Google Scholar] [CrossRef]
- Birt, T.P.; Green, J.M.; Davidson, W.S. Contrasts in development and smolting of genetically distinct sympatric anadromous and nonanadromous Atlantic salmon, Salmo salar. Can. J. Zool. 1991, 69, 2075–2084. [Google Scholar] [CrossRef]
- Nilsen, T.O.; Ebbesson, L.O.E.; Stefansson, S.O. Smolting in anadromous and landlocked strains of Atlantic salmon (Salmo salar). Aquaculture 2003, 222, 71–82. [Google Scholar] [CrossRef]
- Staurnes, M.; Lysfjord, G.; Berg, O.K. Parr-smolt transformation of a nonanadromous population of Atlantic salmon (Salmo salar) in Norway. Can. J. Zool. 1992, 70, 197–199. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Piironen, J.; Kiiskinen, P.; Hassinen, M.; Vornanen, M. Comparison of gene expression in the gill of salmon (Salmo salar) smolts from anadromous and landlocked populations. Ann. Zool. Fennici 2013, 50, 16–35. [Google Scholar] [CrossRef]
- Piironen, J.; Kiiskinen, P.; Huuskonen, H.; Heikura-Ovaskainen, M.; Vornanen, M. Comparison of smoltification in Atlantic salmon (Salmo salar) from anadromous and landlocked populations under common garden conditions. Ann. Zool. Fennici 2013, 50, 1–15. [Google Scholar] [CrossRef]
- Johnston, I.A.; Abercromby, M.; Andersen, Ø. Loss of muscle fibres in a landlocked dwarf Atlantic salmon population. Biol. Lett. 2005, 1, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Sutterlin, A.M.; MacLean, D. Age at first maturity and the early expression of oocyte recruitment process in two forms of Atlantic salmon (Salmo salar) and their hybrids. Can. J. Fish Aquat. Sci. 1984, 41, 1139–1149. [Google Scholar] [CrossRef]
- Vuorinen, J.; Berg, O.K. Genetic divergence of anadromous and nonanadromous Atlantic salmon (Salmo salar) in the River Namsen, Norway. Can. J. Fish. Aquat. Sci. 1989, 46, 406–409. [Google Scholar] [CrossRef]
- Tonteri, A.; Titov, S.; Veselov, A.; Zubchenko, A.; Koskinen, M.T.; Lesbarreres, D.; Kaluzhin, S.; Bakhmet, I.; Lumme, J.; Primmer, C.R. Phylogeography of anadromous and non-anadromous Atlantic salmon (Salmo salar) from northern Europe. Ann. Zool. Fennici 2005, 42, 1–22. [Google Scholar]
- Artamonova, V.S. Genetic markers in population studies of Atlantic salmon Salmo salar L.: Karyotype characters and allozymes. Russ. J. Genet. 2007, 43, 221–233. [Google Scholar] [CrossRef]
- Perrier, C.; Bourret, V.; Kent, M.P.; Bernatchez, L. Parallel and non-parallel genome-wide divergence among replicate population pairs of freshwater and anadromous Atlantic salmon. Mol. Ecol. 2013, 22, 5577–5593. [Google Scholar] [CrossRef]
- Sandlund, O.T.; Karlsson, S.; Thorstad, E.B.; Berg, O.K.; Kent, M.P.; Norum, I.C.J.; Hindar, K. Spatial and temporal genetic structure of a river-resident Atlantic salmon (Salmo salar) after millennia of isolation. Ecol. Evol. 2014, 4, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Hauge, H.; Dahle, M.K.; Kristoffersen, A.B.; Grove, S.; Wiik-Nielsen, C.R.; Tengs, T. The genome of a landlocked Atlantic salmon Salmo salar characterized through high-throughput sequencing. J. Evol. Biol. Res. 2016, 8, 1–14. [Google Scholar]
- Gavrilets, S.; Scheiner, S.M. The genetics of phenotypic plasticity. V. Evolution of reaction norm shape. J. Evol. Biol. 1993, 6, 31–48. [Google Scholar] [CrossRef]
- Dorofeeva, E.A. Systematics and distribution history of European salmonid fishes of the genus Salmo. J. Ichthyol. 1998, 38, 419–429. [Google Scholar]
- Artamonova, V.S.; Afanasyev, S.A.; Bardukov, N.V.; Golod, V.M.; Kokodiy, S.V.; Koulish, A.V.; Pashkov, A.N.; Pipoyan, S.K.; Reshetnikov, S.I.; Makhrov, A.A. The Center of Origin and Colonization Routes of Noble Salmons of the Genus Salmo (Salmonidae, Actinopterigii). Dokl. Biochem. Biophys. 2020, 493, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Makhrov, A.A.; Bolotov, I.N. Ecological causes of high morphological plasticity of members of a taxon inhabiting the center of its origin (Exemplified by the Noble Salmons, genus Salmo). Biol. Bull. 2019, 46, 38–46. [Google Scholar] [CrossRef]
River of Origin | Source | Abbreviated Name of Sample | Sampling Date | Sample Size | Fork Length, cm | Age | |
---|---|---|---|---|---|---|---|
Range | Mean ± SD | ||||||
Keret | Vygskiy Hatchery | Keret-V | 21.04.2001 | 30 | 11.3–16.2 | 13.81 ± 1.16 | 2. |
Keret | Kemskiy Hatchery | Keret-K | 28.04.2001 | 31 | 10.2–20.2 | 15.61 ± 2.25 | 2. |
Keret | Keret River, wild | Keret-W | 05.10.2001 | 30 | 6.1–15.5 | 9.76 ± 3.34 | 0+ and older |
Shuya | Vygskiy Hatchery | Shuya-V | 19.04.2001 | 30 | 6.4–9.6 | 7.80 ± 0.78 | 1. |
Shuya | Kemskiy Hatchery | Shuya-K | 26.04.2001 | 30 | 6.9–14.0 | 10.81 ± 1.82 | 1. |
Shuya | Shuya River, wild | Shuya-W | 07.09.2001 | 27 | 5.5–15.4 | 10.09 ± 2.97 | 0+–2+ |
Index | Bone | Indices as a Ratio of Traits (traits Are Distances between Landmarks) |
---|---|---|
Ind2 | Articulare | 1–3/1–4 |
Ind4 | Articulare | 2–4/1–4 |
Ind6 | Dentale | 5–7/5–6 |
Ind7 | Dentale | 6–7/5–6 |
Ind8 | Hyomandibulare | 8–9/8–12 |
Ind23 | Hyomandibulare | 11–13/8–12 |
Ind24 | Hyomandibulare | 11–14/8–12 |
Ind29 | Ceratohyale | 15–16/15–18 |
Ind31 | Ceratohyale | 16–18/15–18 |
Ind33 | Epihyale | 19–20/20–22 |
Ind38 | Quadrate | 23–24/23–25 |
Index | Keret-V | Keret-K | Keret-W | Shuya-V | Shuya-K | Shuya-W |
---|---|---|---|---|---|---|
Ind2 | 90.1 ± 3.6 | 89.4 ± 4.0 | 89.4 ± 3.6 | 86.6 ± 3.3 | 86.3 ± 2.7 | 86.2 ± 3.1 |
Ind4 | 72.4 ± 2.2 | 71.0 ± 1.5 | 70.8 ± 2.3 | 72.6 ± 2.0 | 71.7 ± 1.9 | 72.0 ± 1.9 |
Ind6 | 71.1 ± 2.6 | 71.0 ± 2.0 | 69.3 ± 2.1 | 71.9 ± 2.0 | 71.8 ± 1.9 | 72.3 ± 2.0 |
Ind7 | 31.6 ± 2.5 | 31.5 ± 2.3 | 32.5 ± 2.1 | 31.1 ± 1.8 | 30.8 ± 1.9 | 29.6 ± 2.0 |
Ind8 | 17.4 ± 1.7 | 18.0 ± 1.0 | 17.9 ± 2.1 | 19.0 ± 1.1 | 17.7 ± 1.1 | 19.6 ± 1.2 |
Ind23 | 68.1 ± 1.2 | 68.2 ± 2.1 | 68.8 ± 3.5 | 66.9 ± 1.4 | 67.3 ± 2.0 | 66.8 ± 1.3 |
Ind24 | 65.5 ± 1.1 | 65.6 ± 2.0 | 66.4 ± 2.3 | 64.1 ± 1.6 | 64.4 ± 1.9 | 64.4 ± 1.4 |
Ind29 | 68.1 ± 3.7 | 68.8 ± 3.3 | 69.3 ± 4.1 | 69.2 ± 2.6 | 68.6 ± 3.2 | 67.4 ± 2.4 |
Ind31 | 110.9 ± 3.0 | 111.6 ± 3.7 | 109.7 ± 4.1 | 111.3 ± 2.3 | 110.7 ± 2.9 | 107.8 ± 3.6 |
Ind33 | 22.3 ± 1.9 | 23.7 ± 2.3 | 22.3 ± 2.3 | 24.8 ± 1.8 | 24.8 ± 2.9 | 23.8 ± 2.1 |
Ind38 | 68.7 ± 2.0 | 69.6 ± 2.2 | 70.5 ± 3.8 | 68.9 ± 1.9 | 72.9 ± 2.6 | 70.9 ± 2.8 |
Sample | Keret-V | Keret-K | Keret-W | Shuya-V | Shuya-K | Shuya-W |
---|---|---|---|---|---|---|
Keret-V | ---- | Ind 33 | Ind 6 | - | - | Ind 2, 7, 8, 23, 24, 31, 33, 38 |
Keret-K | Ind 4 | ---- | Ind 6 | Ind 2, 4, 8, 23, 24 | Ind 24 | Ind 2, 7, 8, 23, 31 |
Keret-W | Ind 4, 38 | Ind 33 | ---- | Ind 8, 38 | Ind 23 | Ind 4, 29, 33 |
Shuya-V | Ind 2, 8, 23, 24, 33 | Ind 33 | Ind 2, 4, 6, 7, 23, 24, 33 | ---- | - | Ind 7, 29, 31, 38 |
Shuya-K | Ind 2, 24, 33, 38 | Ind 2, 38 | Ind 2, 6, 7, 24, 33, 38 | Ind 8, 38 | ---- | Ind 8, 31, 38 |
Shuya-W | - | Ind 4, 6, 24, 38 | Ind 2, 6, 7, 8, 23, 24 | - | Ind 7 | ---- |
Factors | Test | Value | F | Effect—df | Error—df | p | Partial Eta-Squared | Non-Centrality | Observed Power (alpha = 0.05) |
---|---|---|---|---|---|---|---|---|---|
Habitat | Wilks | 0.460 | 7.0 | 22 | 326 | 0.000 ** | 0.322 | 155 | 1.00 |
Origin | Wilks | 0.519 | 13.7 | 11 | 163 | 0.000 ** | 0.481 | 151 | 1.00 |
Habitat–origin interaction | Wilks | 0.733 | 2.5 | 22 | 326 | 0.000 ** | 0.144 | 55 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurtseva, A.O.; Lajus, D.L.; Makhrov, A.A.; Shirokov, V.A.; Shurov, I.L.; Artamonova, V.S. Effects of the Habitat and Genotype on Osteological Traits in Landlocked and Anadromous Ecological Forms of Atlantic Salmon Salmo salar Linnaeus, 1758. Diversity 2022, 14, 806. https://doi.org/10.3390/d14100806
Yurtseva AO, Lajus DL, Makhrov AA, Shirokov VA, Shurov IL, Artamonova VS. Effects of the Habitat and Genotype on Osteological Traits in Landlocked and Anadromous Ecological Forms of Atlantic Salmon Salmo salar Linnaeus, 1758. Diversity. 2022; 14(10):806. https://doi.org/10.3390/d14100806
Chicago/Turabian StyleYurtseva, Anastasia O., Dmitry L. Lajus, Alexander A. Makhrov, Vyacheslav A. Shirokov, Igor L. Shurov, and Valentina S. Artamonova. 2022. "Effects of the Habitat and Genotype on Osteological Traits in Landlocked and Anadromous Ecological Forms of Atlantic Salmon Salmo salar Linnaeus, 1758" Diversity 14, no. 10: 806. https://doi.org/10.3390/d14100806
APA StyleYurtseva, A. O., Lajus, D. L., Makhrov, A. A., Shirokov, V. A., Shurov, I. L., & Artamonova, V. S. (2022). Effects of the Habitat and Genotype on Osteological Traits in Landlocked and Anadromous Ecological Forms of Atlantic Salmon Salmo salar Linnaeus, 1758. Diversity, 14(10), 806. https://doi.org/10.3390/d14100806