Living in the Extreme: Fatty Acid Profiles and Their Specificity in Certain Tissues of Dominant Antarctic Silverfish, Pleuragramma antarcticum, from the Antarctic Sound (Southern Ocean) Collected during the Austral Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Total Lipids Extraction Procedure and Fatty Acids’ Analysis
2.2. Statistical Analysis
3. Results
3.1. Muscles
3.2. Gills
3.3. Heart
3.4. Liver
3.5. Gall Bladder
3.6. Gonads
3.7. Brain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kailola, P.J.; Williams, M.J.; Stewart, P.C.; Reichelt, R.E.; McNee, A.; Grieve, C. Australian Fisheries Resources; Bureau of Resource Sciences: Canberra, Australia, 1993; 422p.
- DeWitt, H.H. Coastal and Deep-Water Fishes of the Antarctic; Antarctic Map Folio Series; Folio 15; Bushnell, V.C., Ed.; American Geophysical Society: New York, NY, USA, 1971; pp. 1–18. [Google Scholar]
- Andriashev, A.P. A general review of the Antarctic fish fauna. In Biogeography and Ecology in Antarctica; Part of the Monographiae Biologicae book series; van Mieghem, J., van Oye, P., Eds.; Springer Science: Dordrecht, The Netherlands, 1965; Volume 15, pp. 491–550. [Google Scholar] [CrossRef]
- Hubold, G. Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner-and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol. 1984, 3, 231–236. [Google Scholar] [CrossRef]
- Hubold, G. Ecology of notothenioid fish in the Weddell Sea. In Biology of Antarctic Fish; Springer: Berlin/Heidelberg, Germany, 1991; pp. 3–22. [Google Scholar]
- Donnelly, J.; Torres, J.J.; Sutton, T.T.; Simoniello, C. Fishes of the eastern Ross Sea, Antarctica. Polar Biol. 2004, 27, 637–650. [Google Scholar] [CrossRef]
- Eastman, J.T. The nature of the diversity of Antarctic fishes. Polar Biol. 2005, 28, 93–107. [Google Scholar] [CrossRef]
- Clarke, A.; Johnston, I.A. Evolution and adaptive radiation of Antarctic fishes. Trends Ecol. Evol. 1996, 11, 212–218. [Google Scholar] [CrossRef]
- Eastman, J.T. Evolution and diversification of Antarctic notothenioid fishes. Am. Zool. 1991, 31, 93–109. [Google Scholar] [CrossRef]
- Hubold, G.; Ekau, W. Midwater fish fauna of the Weddell Sea, Antarctica. In Proceedings of the Fifth Congress of European Ichthyologists, Stockholm, Sweden; Kullander, S.O., Fernholm, B., Eds.; Swedish Museum of Natural History: Stockholm, Sweden, 1987; pp. 391–396. [Google Scholar]
- Eastman, J.T.; DeVries, A.L. Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 1982, 2, 385–393. [Google Scholar] [CrossRef]
- La Mesa, M.; Eastman, J.T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish. 2012, 13, 241–266. [Google Scholar] [CrossRef]
- Orlov, A.M.; Mishin, A.V.; Artemenkov, D.V.; Murzina, S.A. Length-weight characteristics of some pelagic fishes in the high latitudes of Atlantic sector of the Southern Ocean. J. Ichthyol. 2022, 62, 237–243. [Google Scholar]
- Wöhrmann, A.P.; Hagen, W.; Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 1997, 151, 205–218. [Google Scholar] [CrossRef]
- Eastman, J.T.; DeVries, A.L. Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol. 1989, 9, 333–335. [Google Scholar] [CrossRef]
- Hagen, W.; Kattner, G. The role of lipids in the life history of the Antarctic silverfish Pleuragramma antarctica. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem; Springer: Cham, Switzerland, 2017; pp. 131–148. [Google Scholar]
- Hagen, W.; Kattner, G.; Friedrich, C. The lipid compositions of High-Antarctic notothenioid fish species with different life strategies. Polar Biol. 2000, 23, 785–791. [Google Scholar] [CrossRef]
- Faleyeva, T.I.; Gerasimchuk, V.V. Features of reproduction in the Antarctic sidestripe, Pleuragramma antarcticum Nototheniidae. J. Ichthyol. 1990, 30, 67–79. [Google Scholar]
- Ferrando, S.; Hanchet, S.; Angiolillo, M.; Gambardella, C.; Pisano, E.; Tagliaferro, G.; Vacchi, M. Insights into the life cycle of the Antarctic Silverfish. In Reproduction Features of the Ross Sea Population. In Proceedings of the Abstracts of the International Polar Year Oslo Science Conference, Oslo, Norway, 8 June 2010; p. 1. [Google Scholar]
- Reinhardt, S.B.; Van Vleet, E.S. Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar. Biol. 1986, 91, 149–159. [Google Scholar] [CrossRef]
- Friedrich, C.; Hagen, W. Lipid contents of five species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biol. 1994, 14, 359–369. [Google Scholar] [CrossRef]
- DeWitt, H.H. The character of the midwater fish fauna of the Ross Sea, Antarctica. In Antarctic Ecology I; Holdgate, M.W., Ed.; Academic Press: London, UK, 1970; pp. 305–314. [Google Scholar]
- Donnelly, J.; Torres, J.J. Pelagic fishes in the Marguerite Bay region of the West Antarctic Peninsula continental shelf. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 523–539. [Google Scholar] [CrossRef]
- Reisenbichler, K.R. Growth and Chemical Composition in Two Populations of the Antarctic Silverfish, Pleuragramma antarcticum (Pisces, Notoheniidae). Ph.D. Dissertation, University of California, Santa Barbara, CA, USA, 1993. [Google Scholar]
- Eastman, J.T.; Witmer, L.M.; Ridgely, R.C.; Kuhn, K.L. Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J. Morphol. 2014, 275, 841–861. [Google Scholar] [CrossRef]
- Voskoboinikova, O.; Detrich, H.W.; Albertson, R.C.; Postlethwait, J.H.; Ghigliotti, L.; Pisano, E. Evolution reshaped life for the water column: The skeleton of the Antarctic silverfish Pleuragramma antarctica Boulenger, 1902. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem; Springer: Cham, Switzerland, 2017; pp. 3–26. [Google Scholar]
- Devries, A.L.; Eastman, J.T. Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 1978, 271, 352–353. [Google Scholar] [CrossRef]
- Eastman, J.T. Lipid storage systems and the biology of two neutrally buoyant Antarctic notothenioid fishes. Comp. Biochem. Physiol. 1988, 90, 529–537. [Google Scholar] [CrossRef]
- Near, T.J.; Jones, C.D.; Eastman, J.T. Geographic intraspecific variation in buoyancy within Antarctic notothenioid fishes. Antarct. Sci. 2009, 21, 123–129. [Google Scholar] [CrossRef]
- Falk-Petersen, S.; Falk-Petersen, I.B.; Sargent, J.R. Structure and function of an unusual lipid storage organ in the Arctic fish Lumpenus maculatus Fries. Sarsia 1986, 71, 1–6. [Google Scholar] [CrossRef]
- Murzina, S.A.; Pekkoeva, S.N.; Kondakova, E.A.; Nefedova, Z.A.; Filippova, K.A.; Nemova, N.N.; Orlov, A.M.; Berge, J.; Falk-Petersen, S. Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules 2020, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Pekkoeva, S.N.; Murzina, S.A.; Nefedova, Z.A.; Ripatti, P.O.; Falk-Petersen, S.; Berge, J.; Lonne, O.J.; Nemova, N.N. Ecological role of lipids and fatty acids in the early postembryonic development of the daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter. Russ. J. Ecol. 2017, 48, 240–244. [Google Scholar] [CrossRef]
- Pekkoeva, S.N.; Murzina, S.A.; Nefedova, Z.A.; Falk-Petersen, S.; Berge, J.; Lønne, O.J.; Nemova, N.N. Fatty acid composition of the postlarval daubed shanny (Leptoclinus maculatus) during the polar night. Polar Biol. 2020, 43, 657–664. [Google Scholar] [CrossRef]
- Mayzaud, P.; Chevallier, J.; Tavernier, E.; Moteki, M.; Koubbi, P. Lipid composition of the Antarctic fish Pleuragramma antarcticum. Influence of age class. Polar Sci. 2011, 5, 264–271. [Google Scholar] [CrossRef]
- Giraldo, C.; Mayzaud, P.; Tavernier, E.; Irisson, J.O.; Penot, F.; Becciu, J.; Chartier, A.; Boutoute, M.; Koubbi, P. Lipid components as a measure of nutritional condition in fish larvae (Pleuragramma antarcticum) in East Antarctica. Mar. Biol. 2013, 160, 877–887. [Google Scholar] [CrossRef]
- Giraldo, C.; Mayzaud, P.; Tavernier, E.; Boutoute, M.; Penot, F.; Koubbi, P. Lipid dynamics and trophic patterns in Pleuragramma antarctica life stages. Antarct. Sci. 2015, 27, 429–438. [Google Scholar] [CrossRef]
- Nachman, R.J. Unusual predominance of even-carbon hydrocarbons in an antarctic food chain. Lipids 1985, 20, 629–633. [Google Scholar] [CrossRef]
- Phleger, C.F.; Nichols, P.D.; Erb, E.; Williams, R. Lipids of the notothenioid fishes Trematomus spp. and Pagothenia borchgrevinki from East Antarctica. Polar Biol. 1999, 22, 241–247. [Google Scholar]
- Kamler, E.; Krasicka, B.; Rakusa-Suszczewski, S. Comparison of lipid content and fatty acid composition in muscle and liver of two notothenioid fishes from Admiralty Bay (Antarctica): An eco-physiological perspective. Polar Biol. 2001, 24, 735–743. [Google Scholar]
- Lund, E.D.; Sidell, B.D. Neutral lipid compositions of Antarctic fish tissues may reflect use of fatty acyl substrates by catabolic systems. Mar. Biol. 1992, 112, 377–382. [Google Scholar] [CrossRef]
- DeWitt, H.H.; Hopkins, T.L. Aspects of the diet of the Antarctic silverfish, Pleuragramma antarcticum. In Adaptations within Antarctic Ecosystems: Proceedings of the Third SCAR Symposium on Antarctic Biology; Llano, G.A., Ed.; Smithsonian Institution: Washington, DC, USA, 1977; pp. 557–568. [Google Scholar]
- Hubold, G. Stomach contents of the Antarctic silverfish Pleuragramma antarcticum from the southern and eastern Weddell Sea (Antarctica). Polar Biol. 1985, 5, 43–48. [Google Scholar] [CrossRef]
- Kellermann, A. Food and feeding ecology of postlarval and juvenile Pleuragramma antarcticum (Pisces; Notothenioidei) in the seasonal pack ice zone off the Antarctic Peninsula. Polar Biol. 1987, 7, 307–315. [Google Scholar] [CrossRef]
- Vacchi, M.; Pisano, E.; Ghigliotti, L. (Eds.) The Antarctic silverfish: A keystone species in a changing ecosystem. Advances in Polar Ecology; Springer: Berlin/Heidelberg, Germany, 2017; 314p. [Google Scholar]
- La Mesa, M.; Eastman, J.T.; Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: A review. Polar Biol. 2004, 27, 321–338. [Google Scholar] [CrossRef]
- Eastman, J.T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 1985, 4, 155–160. [Google Scholar] [CrossRef]
- Takahashi, M.; Nemoto, T. The food of some Antarctic fish in the western Ross Sea in summer 1979. Polar Biol. 1984, 3, 237–239. [Google Scholar] [CrossRef]
- Kobyliansky, S.G.; Orlov, A.M.; Gordeeva, N.V. Composition of deepsea pelagic ichthyocenes of the Southern Atlantic, from waters of the range of the Mid-Atlantic and Walvis Ridges. J. Ichthyol. 2010, 50, 932–949. [Google Scholar] [CrossRef]
- Parker, M.L.; Fraser, W.R.; Ashford, J.; Patarnello, T.; Zane, L.; Torres, J.J. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the western Antarctic peninsula. J. Mar. Syst. 2015, 152, 18–41. [Google Scholar] [CrossRef]
- Ainley, D.G.; DeMaster, D.P. The upper trophic levels in polar marine ecosystems. In Polar Oceanography; Smith, I., Walker, O., Eds.; Academic Press: London, UK, 1990; pp. 599–630. [Google Scholar]
- Robison, B.H. What drives the diel vertical migrations of Antarctic midwater fish? J. Mar. Biol. Assoc. UK 2003, 83, 639–642. [Google Scholar] [CrossRef]
- Williams, T.D. The Penguins; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Gon, O.; Heemstra, P.C. (Eds.) Fishes of the Southern Ocean; JBL Smith Institute of Ichthyology: Grahamstown, South Africa, 1990. [Google Scholar]
- Folch, J.; Lees, M.; Sloan-Stanley, G.H. A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle). J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Tsyganov, E.P. Method for direct lipid methylation after TLC without elution with silica gel. Lab. Delo 1971, 8, 490–493. [Google Scholar]
- Kabakoff, R. R in Action: Data Analysis and Graphics with R; Volkova, P.A., Ed.; DMK Press: Moscow, Russia, 2014; 588p. [Google Scholar]
- Morozov, E.G.; Flint, M.V.; Orlov, A.M.; Frey, D.I.; Molodtsova, T.N.; Krechik, V.A.; Latushkin, A.A.; Salyuk, P.A.; Murzina, S.A.; Minin, K.V.; et al. Oceanographic and Ecosystem Studies in the Atlantic Sector of Antarctica (Cruise 87 of the Research Vessel Akademik Mstislav Keldysh). Oceanology 2022, 62, 825–827. [Google Scholar]
- Kreps, E.M. Lipids of Cellular Membranes. The Evolution of Lipids of the Brain. Adaptive Function of Lipids; Nauka: Leningrad, Russia, 1981. [Google Scholar]
- Sidorov, V.S. Environmental biochemistry of fishes. In Lipids; Shatunovskyi, M.I., Ed.; Nauka: Moscow, Russia, 1983; pp. 154–178. [Google Scholar]
- Rioux, V.; Catheline, D.; Beauchamp, E.; Le Bloc’h, J.; Pédrono, F.; Legrand, P. Substitution of dietary oleic acid for myristic acid increases the tissue storage of α-linolenic acid and the concentration of docosahexaenoic acid in the brain, red blood cells and plasma in the rat. Animal 2008, 2, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Hazel, J.R. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1984, 246, R460–R470. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, W.; Wassall, S.R. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem. Phys. Lipids 2003, 126, 1–27. [Google Scholar] [CrossRef]
- Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: A meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008, 12, 829–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luckey, M. Membrane Structural Biology: With Biochemical and Biophysical Foundations; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Jones, P.G.; Inouye, M. The cold-shock response—A hot topic. Mol. Microbiol. 1994, 11, 811–818. [Google Scholar] [CrossRef]
- Murata, N.; Los, D.A. Membrane fluidity and temperature perception. Plant Physiol. 1997, 115, 875. [Google Scholar] [CrossRef]
- Tiku, P.E.; Gracey, A.Y.; Macartney, A.I.; Beynon, R.J.; Cossins, A.R. Cold-induced expression of Δ9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 1996, 271, 815–818. [Google Scholar] [CrossRef]
- Coutteau, P.; Geurden, I.; Camara, M.R.; Bergot, P.; Sorgeloos, P. Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 1997, 155, 149–164. [Google Scholar] [CrossRef]
- Sargent, J.R.; Tocher, D.R.; Bell, J.G. The lipids. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 181–257. [Google Scholar]
- Velansky, P.V.; Kostetsky, E.Y. Lipids of marine cold-water fishes. Russ. J. Mar. Biol. 2008, 34, 51–56. [Google Scholar] [CrossRef]
- Visentainer, J.V.; Noffs, M.D.A.; de Oliveira Carvalho, P.; de Almeida, V.V.; de Oliveira, C.C.; de Souza, N.E. Lipid content and fatty acid composition of 15 marine fish species from the southeast coast of Brazil. J. Am. Oil Chem. Soc. 2007, 84, 543–547. [Google Scholar] [CrossRef]
- Murzina, S.A. The Role of Lipids and Their Fatty Acid Components in Biochemical Adaptations of the Spotted Lumpen Leptoclinus maculatus F. of the Northwestern Coast of the Island Svalbard. Ph.D. Dissertation, Russian Academy of Sciences, Petrozavodsk, Russia, 2010; 184p. [Google Scholar]
- Pekkoeva, S.N. Changes in the Lipid Composition of the Muscles and the Lipid Sac of the Representative of the Arctic Ichthyofauna, Lumpen Spotted Leptoclinus maculatus in Postembryonic Development. Ph.D. Dissertation, Russian Academy of Sciences, Sankt-Peterburg, Russia, 2018; 164p. [Google Scholar]
- Murillo, E.; Rao, K.S.; Armando, A.D. The lipid content and fatty acid composition of four eastern central Pacific native fish species. J. Food Compos. Anal. 2014, 33, 1–5. [Google Scholar] [CrossRef]
- Murzina, S.A.; Nefedova, Z.A.; Falk-Petersen, S.; Ripatti, P.O.; Ruokolainen, T.R.; Pekkoeva, S.N.; Nemova, N.N. Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii. Int. J. Mol. Sci. 2013, 14, 7048–7060. [Google Scholar] [CrossRef]
- Enig, M. The Importance of Saturated Fats for Biological Functions; Weston A. Prince Foundation: Washington, DC, USA, 2004. [Google Scholar]
- Legrand, P.; Rioux, V. The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 2010, 45, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Pepe, S.; McLennan, P.L. Dietary fish oil confers direct antiarrhythmic properties on the myocardium of rats. J. Nutr. 1996, 126, 34–42. [Google Scholar] [CrossRef]
- Daniels, R.A. Feeding ecology of some fishes of the Antarctic Peninsula. Fish Bull. 1982, 80, 575–588. [Google Scholar]
- Daniels, R.A.; Lipps, J.H. Distribution and ecology of fishes of the Antarctic Peninsula. J. Biogeogr. 1982, 9, 1–9. [Google Scholar] [CrossRef]
- Sampaio, J.L.; Gerl, M.J.; Klose, C.; Ejsing, C.S.; Beug, H.; Simons, K.; Shevchenko, A. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA 2011, 108, 1903–1907. [Google Scholar] [CrossRef]
- Trumble, S.J.; Kanatous, S.B. Fatty acid use in diving mammals: More than merely fuel. Front. Physiol. 2012, 3, 184. [Google Scholar] [CrossRef]
- Geoffroy, M.; Daase, M.; Cusa, M.; Darnis, G.; Graeve, M.; Santana Hernández, N.; Berge, J.; Renaud, P.E.; Cottier, F.; Falk-Petersen, S. Mesopelagic sound scattering layers of the high Arctic: Seasonal variations in biomass, species assemblages, and trophic relationships. Front. Mar. Sci. 2019, 6, 364. [Google Scholar] [CrossRef]
- Hopkins, T.L.; Torres, J.J. The zooplankton community in the vicinity of the ice edge, western Weddell Sea, March 1986. Polar Biol. 1988, 9, 79–87. [Google Scholar] [CrossRef]
- Lancraft, T.M.; Reisenbichler, K.R.; Robison, B.H.; Hopkins, T.L.; Torres, J.J. A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish predation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 2247–2260. [Google Scholar] [CrossRef]
- Kelley, D.E.; Goodpaster, B.H.; Storlien, L. Muscle triglyceride and insulin resistance. Annu. Rev. Nutr. 2002, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Borkman, M.; Storlien, L.H.; Pan, D.A.; Jenkins, A.B.; Chisholm, D.J.; Campbell, L.V. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 1993, 328, 238–244. [Google Scholar] [CrossRef]
- Vessby, B.; Tengblad, S.; Lithell, H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 1994, 37, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.A.; Lillioja, S.; Milner, M.R.; Kriketos, A.D.; Baur, L.A.; Bogardus, C.; Storlien, L.H. Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J. Clin. Investig. 1995, 96, 2802–2808. [Google Scholar] [CrossRef]
- Murzina, S.A.; Dgebuadze, P.Y.; Pekkoeva, S.N.; Voronin, V.P.; Mekhova, E.S.; Thanh, N.T. Lipids and fatty acids of the gonads of Sea Urchin Diadema Setosum (Echinodermata) from the coastal area of the Nha Trang Bay, Central Vietnam. Eur. J. Lipid Sci. Technol. 2021, 123, 2000321. [Google Scholar] [CrossRef]
- Voronin, V.P.; Nemova, N.N.; Ruokolainen, T.R.; Artemenkov, D.V.; Rolskii, A.Y.; Orlov, A.M.; Murzina, S.A. Into the Deep: New Data on the Lipid and Fatty Acid Profile of Redfish Sebastes mentella Inhabiting Different Depths in the Irminger Sea. Biomolecules 2021, 11, 704. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 5th ed.; W.H. Freeman & Company: New York, NY, USA, 2008; 1294p. [Google Scholar]
- Sidell, B.D.; Hazel, J.R. Triacylglycerol lipase activities in tissues of Antarctic fishes. Polar Biol. 2002, 25, 517–522. [Google Scholar] [CrossRef]
- Crockett, E.L.; Sidell, B.D. Some pathways of energy metabolism are cold adapted in Antarctic fishes. Physiol. Zool. 1990, 63, 472–488. [Google Scholar] [CrossRef]
- Arts, M.T.; Kohler, C.C. Health and condition in fish: The influence of lipids on membrane competency and immune response. In Lipids in Aquatic Ecosystems; Springer: New York, NY, USA, 2009; pp. 237–256. [Google Scholar] [CrossRef]
- Lapin, V.I.; Shatunovsky, M.I. Features of composition, physiological and ecological value of fish lipids. Usp. Sovrem. Biol. 1981, 92, 380–394. [Google Scholar]
- Voronin, V.P.; Artemenkov, D.V.; Orlov, A.M.; Murzina, S.A. Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat. J. Mar. Sci. Eng. 2022, 10, 949. [Google Scholar] [CrossRef]
- Pasternak, A.; Bugajska, J.; Szura, M.; Walocha, J.A.; Matyja, A.; Gajda, M.; Sztefko, K.; Gil, K. Biliary polyunsaturated fatty acids and telocytes in gallstone disease. Cell Transplant. 2017, 26, 125–133. [Google Scholar] [CrossRef]
- Tancharoenrat, P.; Zaefarian, F.; Ravindran, V. Composition of chicken gallbladder bile. Br. Poult. Sci. 2022, 63, 548–551. [Google Scholar] [CrossRef]
- Malagelada, J.R.; Longstreth, G.F.; Summerskill, W.H.J.; Go, V.L.W. Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology 1976, 70, 203–210. [Google Scholar] [CrossRef]
- Falk-Petersen, S.; Hagen, W.; Kattner, G.; Clarke, A.; Sargent, J. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can. J. Fish. Aquat. Sci. 2000, 57, 178–191. [Google Scholar] [CrossRef]
- Dalsgaard, J.; John, M.S.; Kattner, G.; Müller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340. [Google Scholar] [CrossRef]
- Graeve, M.; Kattner, G.; Piepenburg, D. Lipids in Arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol. 1997, 18, 53–61. [Google Scholar] [CrossRef]
- Parrish, C.C. Lipids in marine ecosystems. ISRN Oceanogr. 2013, 9, 604045. [Google Scholar] [CrossRef]
- Hopkins, T.L. Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar. Biol. 1987, 96, 93–106. [Google Scholar] [CrossRef]
- Mintenbeck, K. Trophic Interactions within High Antarctic Shelf Communities—Food Web Structure and the Significance of Fish. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2008; 246p. [Google Scholar]
- Moreno, C.A.; Rueda, T.; Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: Quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 1986, 35, 101–117. [Google Scholar]
- Olaso, I.; Lombarte, A.; Velasco, F. Daily ration of antarctic silverfish (Pleuragramma antarcticum Boulenger, 1902) in the eastern Weddell Sea. Sci. Mar. 2004, 68, 419–424. [Google Scholar] [CrossRef]
- Williams, R. Trophic relationship between pelagic fish and euphausiids in Antarctic waters. In Antarctic Nutrient Cycles and Food Webs; Siegfried, W.R., Condy, P.R., Laws, R.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 452–459. [Google Scholar] [CrossRef]
- Linkowski, T.B.; Presler, P.; Zukowski, C. Food habits of nototheniid fishes (Nototheniidae) in Admiralty Bay (King George Island, South Shetland Islands). Pol. Polar Res. 1983, 4, 79–95. [Google Scholar]
- Pinkerton, M.H. Diet and trophic ecology of adult Antarctic silverfish (Pleuragramma antarctica). In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem; Advances in Polar Ecology; Vacchi, M., Pisano, E., Ghigliotti, L., Eds.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 93–111. [Google Scholar] [CrossRef]
- Graeve, M.; Dauby, P.; Scailteur, Y. Combined lipid, fatty acid and digestive tract content analyses: A penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol. 2001, 24, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Parzanini, C.; Colombo, S.M.; Kainz, M.J.; Wacker, A.; Parrish, C.C.; Arts, M.T. Discrimination between freshwater and marine fish using fatty acids: Ecological implications and future perspectives. Environ. Rev. 2020, 28, 546–559. [Google Scholar] [CrossRef]
- Bottino, N.R. Lipid composition of two species of Antarctic krill: Euphausia superba and E. crystallorophias. Comp. Biochem. Physiol. Part B Comp. Biochem. 1975, 50, 479–484. [Google Scholar] [CrossRef]
- Kattner, G.; Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 1998, 170, 203–213. [Google Scholar] [CrossRef]
- Carlig, E.; Christiansen, J.S.; Di Blasi, D.; Ferrando, S.; Pisano, E.; Vacchi, M.; O’Driscoll, R.L.; Ghigliotti, L. Midtrophic fish feeding modes at the poles: An ecomorphological comparison of polar cod (Boreogadus saida) and Antarctic silverfish (Pleuragramma antarctica). Polar Biol. 2021, 44, 1629–1642. [Google Scholar] [CrossRef]
- Lazzaro, X.A. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 1987, 146, 97–167. [Google Scholar] [CrossRef]
- Liem, K.F. Acquisition of energy by teleosts: Adaptive mechanisms and evolutionary patterns. In Environmental Physiology of Fishes; Ali, M.A., Ed.; Plenum Press: New York, NY, USA, 1980; pp. 299–334. [Google Scholar]
- Hagen, W.; Van Vleet, E.S.; Kattner, G. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 1996, 134, 85–89. [Google Scholar] [CrossRef]
- Hagen, W.; Kattner, G. Lipid metabolism of the Antarctic euphausiid Thysanmssa macrura and its ecological implications. Limnol. Oceanogr. 1998, 43, 1894–1901. [Google Scholar] [CrossRef]
- Hagen, W.; Kattner, G.; Terbrüggen, A.; Van Vleet, E.S. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 2001, 139, 95–104. [Google Scholar] [CrossRef]
- Hubold, G.; Hagen, W. Seasonality of feeding and lipid content of Pleuragramma antarcticum (Nototheniidae) in the southern Weddell Sea. In Antarctic Communities: Species, Structure and Survival; Battaglia, B., Valencia, J., Walton, D.W.H., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 277–283. [Google Scholar]
- Kattner, G.; Albers, C.; Graeve, M.; Schnack-Schiel, S.B. Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: Indication on feeding modes. Polar Biol. 2003, 26, 666–671. [Google Scholar] [CrossRef]
- Falk-Petersen, S.; Sargent, J.R.; Lønne, O.J.; Timofeev, S. Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biol. 1999, 21, 37–47. [Google Scholar] [CrossRef]
- Graeve, M.; Hagen, W.; Kattner, G. Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1994, 41, 915–924. [Google Scholar] [CrossRef]
- Kattner, G.; Graeve, M.; Hagen, W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 1994, 118, 637–644. [Google Scholar] [CrossRef]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Tocher, D.R.; Castro, L.F.C.; Monroig, Ó. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef]
- Monroig, Ó.; Kabeya, N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: A comprehensive review. Fish. Sci. 2018, 84, 911–928. [Google Scholar] [CrossRef]
- Monroig, Ó.; Shu-Chien, A.C.; Kabeya, N.; Tocher, D.R.; Castro, L.F.C. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog. Lipid Res. 2022, 86, 101157. [Google Scholar] [CrossRef]
- Watanabe, T. Importance of docosahexaenoic acid in marine larval fish. J. World Aquac. Soc. 1993, 24, 152–161. [Google Scholar] [CrossRef]
- Kozlov, A.N. Relationship between intensity and periods of protein increase and fat accumulation in the marbled Notothenia, Notothenia rossi marmorata (Nototheniidae). J. Ichthyol. 1981, 21, 99–102. [Google Scholar]
- Sargent, J.R.; Bell, J.G.; Bell, M.V.; Henderson, R.J.; Tocher, D.R. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 1995, 11, 183–198. [Google Scholar] [CrossRef]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.; Ciappolino, V.; Agostoni, C. DHA effects in brain development and function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Mourente, G. Accumulation of DHA (docosahexaenoic acid; 22:6n-3) in larval and juvenile fish brain. In The Big Fish Bang; Institute of Marine Research: Bergen, Norway, 2003; pp. 239–248. [Google Scholar]
- Salem, N., Jr.; Litman, B.; Kim, H.Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.V.; Dick, J.R. Molecular species composition of the major diacyl glycerophospholipids from muscle, liver, retina and brain of cod (Gadus morhua). Lipids 1991, 26, 565–573. [Google Scholar] [CrossRef]
- Tocher, D.R.; Harvie, D.G. Fatty acid compositions of the major phosphoglycerides from fish neural tissues: (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiol. Biochem. 1988, 5, 229–239. [Google Scholar] [CrossRef]
- Eady, T.L.; Khoutorova, A.; Obenaus, A.; Mohd-Yusof, A.; Bazan, N.G.; Belayev, L. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. Neurobiol. Dis. 2014, 62, 1–7. [Google Scholar] [CrossRef]
- Shulman, G.E.; Yuneva, T.V. The role of docosahexaenoic acid in fish adaptations (review). Ecol. Physiol. Biochem. Aquat. Anim. 1990, 26, 43–51. [Google Scholar]
- Stoknes, I.S.; Okland, H.M.; Falch, E.; Synnes, M. Fatty acid andlipid class composition in eyes and brain from teleosts andelasmobranchs. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 138, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Zhou, Y.; Wu, H.; Luo, Y.; Shen, H. Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: A comparative study. J. Am. Oil Chem. Soc. 2014, 91, 795–804. [Google Scholar] [CrossRef]
- Sambra, V.; Echeverria, F.; Valenzuela, A.; Chouinard-Watkins, R.; Valenzuela, R. Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients 2021, 13, 986. [Google Scholar] [CrossRef]
Component | Brain | Gills | Heart | Liver | Muscles | Gonads | Gall Bladder * |
---|---|---|---|---|---|---|---|
14:0 | 3.29 ± 0.72 | 9.29 ± 0.64 A | 4.77 ± 1.09 | 2.76 ± 0.09 BC | 10.18 ± 0.31 ACD | 5.95 ± 1.02 DE | 4.04 ± 0.24 |
16:0 | 14.20 ± 0.71 | 19.73 ± 0.47 A | 14.52 ± 1.23 B | 11.62 ± 0.72 B | 19.72 ± 0.06 ACD | 16.09 ± 0.83 BDE | 12.85 ± 0.27 |
3,7,11,15-tetramethyl 16:0 | 1.08 ± 0.26 | 2.14 ± 0.24 A | 2.24 ± 0.28 | 2.88 ± 0.31 A | 1.45 ± 0.07 BCD | 1.87 ± 0.19 E | 2.85 ± 0.20 |
18:0 | 5.11 ± 0.39 | 3.48 ± 0.29 | 4.31 ± 0.40 | 3.63 ± 0.16 A | 2.71 ± 0.09 ACD | 3.83 ± 0.32 AE | 3.60 ± 0.00 |
20:0 | 7.88 ± 0.63 | 6.22 ± 0.39 | 8.62 ± 2.26 | 4.95 ± 0.02 ABC | 5.11 ± 0.05 ABC | 7.31 ± 1.03 DE | 5.28 ± 0.19 |
24:0 | 1.79 ± 0.21 | 1.18 ± 0.08 A | 1.62 ± 0.44 | 0.91 ± 0 ABC | 0.97 ± 0.01 ABCD | 1.35 ± 0.18 DE | 1.00 ± 0.04 |
16:1(n − 7) | 9.44 ± 1.18 | 10.84 ± 0.56 | 17.40 ± 2.96 | 23.39 ± 0.94 ABC | 10.19 ± 0.07 D | 13.70 ± 1.54 D | 19.70 ± 0.11 |
18:1(n − 9) | 20.02 ± 1.27 | 18.21 ± 0.87 | 25.92 ± 3.64 | 33.85 ± 0.42 ABC | 16.72 ± 0.06 AD | 20.80 ± 1.81 D | 30.94 ± 0.03 |
18:1(n − 7) | 5.08 ± 0.16 | 6.51 ± 0.10 A | 4.80 ± 0.40 B | 4.28 ± 0.33 B | 6.32 ± 0.11 ACD | 5.33 ± 0.37 | 5.03 ± 0.20 |
20:1(n − 9) | 1.16 ± 0.09 | 1.51 ± 0.10 | 0.89 ± 0.08 B | 0.66 ± 0.06 AB | 1.26 ± 0.09 D | 1.25 ± 0.27 D | 0.86 ± 0.03 |
24:1(n − 9) | 3.24 ± 0.39 | 0.33 ± 0.05 A | 0.16 ± 0.03 A | 0.07 ± 0 ABC | 0.23 ± 0.03 AD | 0.35 ± 0.06 AD | 0.08 ± 0 |
18:2(n − 6) | 0.65 ± 0.08 | 1.26 ± 0.11 A | 0.76 ± 0.16 | 0.49 ± 0.02 B | 1.43 ± 0.04 ACD | 0.94 ± 0.11 DE | 0.69 ± 0.04 |
20:4(n − 6) | 0.15 ± 0.06 | 0.31 ± 0.02 | 0.17 ± 0.04 | 0.07 ± 0.01 BC | 0.25 ± 0.05 D | 0.26 ± 0.11 D | 0.12 ± 0.01 |
18:3(n − 3) | 0.28 ± 0.04 | 0.60 ± 0.08 A | 0.36 ± 0.10 | 0.21 ± 0.01 B | 0.74 ± 0.03 ACD | 0.47 ± 0.07 AD | 0.32 ± 0.02 |
18:4(n − 3) | 1.18 ± 0.18 | 2.46 ± 0.28 A | 1.48 ± 0.29 | 1.04 ± 0.17 B | 3.16 ± 0.05 ABCD | 1.88 ± 0.29 DE | 1.18 ± 0.05 |
20:5(n − 3) | 8.73 ± 0.44 | 9.26 ± 0.89 | 6.36 ± 0.87 | 4.76 ± 0.41 AB | 11.97 ± 0.16 ABCD | 9.91 ± 0.79 DE | 6.23 ± 0.25 |
22:5(n − 3) | 0.59 ± 0.04 | 0.33 ± 0.03 A | 0.40 ± 0.07 | 0.47 ± 0.11 | 0.33 ± 0 A | 0.49 ± 0.08 E | 0.60 ± 0.01 |
22:6(n − 3) | 14.24 ± 1.34 | 4.07 ± 0.11 A | 3.65 ± 0.11 A | 2.73 ± 0.25 AB | 4.92 ± 0.39 ACD | 6.54 ± 0.26 ABCD | 3.21 ± 0.30 |
16:2(n − 4) | 0.77 ± 0.12 | 0.65 ± 0.04 | 0.34 ± 0.06 AB | 0.24 ± 0.01 AB | 0.70 ± 0.02 CD | 0.47 ± 0.06 D | 0.33 ± 0.02 |
∑SFA | 34.02 ± 0.60 | 43.20 ± 0.84 A | 36.90 ± 5.17 | 27.28 ± 1.09 ABC | 41.26 ± 0.27 AD | 37.21 ± 1.28 BDE | 30.26 ± 0.48 |
∑MUFA | 39.33 ± 1.99 | 37.73 ± 1.45 | 49.52 ± 6.28 | 62.67 ± 0.88 ABC | 35.07 ± 0.21 D | 41.74 ± 2.69 DE | 56.99 ± 0.06 |
∑(n − 3) PUFA | 25.02 ± 1.62 | 16.73 ± 1.30 A | 12.26 ± 1.32 A | 9.20 ± 0.61 AB | 21.14 ± 0.49 BCD | 19.29 ± 1.21 CD | 11.53 ± 0.49 |
∑(n − 6) PUFA | 0.86 ± 0.15 | 1.69 ± 0.12 A | 0.98 ± 0.19 | 0.61 ± 0.02 B | 1.84 ± 0.08 ACD | 1.29 ± 0.23 D | 0.89 ± 0.06 |
∑(n − 4) PUFA | 0.77 ± 0.12 | 0.65 ± 0.04 | 0.34 ± 0.06 AB | 0.24 ± 0.01 AB | 0.70 ± 0.02 CD | 0.47 ± 0.06 D | 0.33 ± 0.02 |
∑PUFA | 26.65 ± 1.57 | 19.07 ± 1.46 A | 13.58 ± 1.55 A | 10.05 ± 0.61 AB | 23.68 ± 0.40 BCD | 21.05 ± 1.45 CD | 12.76 ± 0.41 |
∑(n − 3)/∑(n − 6) PUFA | 33.04 ± 7.52 | 9.88 ± 0.30 A | 12.99 ± 1.08 A | 15.05 ± 1.05 AB | 11.61 ± 0.78 A | 15.83 ± 1.73 AB | 13.12 ± 1.37 |
16:0/18:1(n − 9) | 0.72 ± 0.08 | 1.09 ± 0.06 A | 0.64 ± 0.19 | 0.34 ± 0.03 ABC | 1.18 ± 0.01 AD | 0.80 ± 0.11 DE | 0.42 ± 0.01 |
18:1(n − 9)/18:0 | 3.98 ± 0.39 | 5.30 ± 0.29 | 6.35 ± 1.23 | 9.38 ± 0.47 AB | 6.18 ± 0.18 AD | 5.47 ± 0.41 D | 8.58 ± 0.01 |
18:3(n − 3)/18:2(n − 6) | 0.43 ± 0.02 | 0.47 ± 0.02 | 0.46 ± 0.03 | 0.43 ± 0.01 | 0.52 ± 0.01 AD | 0.50 ± 0.02 D | 0.46 ± 0 |
20:4(n − 6)/18:2(n − 6) | 0.22 ± 0.07 | 0.25 ± 0.03 | 0.22 ± 0.02 | 0.15 ± 0.02 | 0.17 ± 0.03 | 0.25 ± 0.07 | 0.18 ± 0 |
20:5(n − 3)/18:3(n − 3) | 33.71 ± 6.04 | 15.59 ± 0.55 A | 19.04 ± 2.12 A | 22.79 ± 1.87 B | 16.23 ± 0.91 AD | 21.62 ± 2.08 B | 19.70 ± 1.97 |
22:6(n − 3)/20:5(n − 3) | 1.63 ± 0.13 | 0.45 ± 0.04 A | 0.61 ± 0.08 A | 0.58 ± 0.03 A | 0.41 ± 0.03 AD | 0.67 ± 0.04 ABE | 0.51 ± 0.03 |
20:5(n − 3)/22:6(n − 3) | 0.63 ± 0.05 | 2.27 ± 0.20 A | 1.74 ± 0.23 A | 1.75 ± 0.09 A | 2.47 ± 0.16 AD | 1.51 ± 0.10 ABE | 1.96 ± 0.10 |
∑MUFA/∑SFA | 1.16 ± 0.08 | 0.87 ± 0.04 A | 1.47 ± 0.30 | 2.31 ± 0.12 ABC | 0.85 ± 0.01 AD | 1.13 ± 0.11 DE | 1.88 ± 0.03 |
∑MUFA/∑PUFA | 1.50 ± 0.17 | 2.03 ± 0.22 | 3.92 ± 0.82 | 6.30 ± 0.35 AB | 1.48 ± 0.03 BCD | 2.04 ± 0.26 D | 4.48 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekkoeva, S.N.; Voronin, V.P.; Mishin, A.V.; Orlov, A.M.; Murzina, S.A. Living in the Extreme: Fatty Acid Profiles and Their Specificity in Certain Tissues of Dominant Antarctic Silverfish, Pleuragramma antarcticum, from the Antarctic Sound (Southern Ocean) Collected during the Austral Summer. Diversity 2022, 14, 817. https://doi.org/10.3390/d14100817
Pekkoeva SN, Voronin VP, Mishin AV, Orlov AM, Murzina SA. Living in the Extreme: Fatty Acid Profiles and Their Specificity in Certain Tissues of Dominant Antarctic Silverfish, Pleuragramma antarcticum, from the Antarctic Sound (Southern Ocean) Collected during the Austral Summer. Diversity. 2022; 14(10):817. https://doi.org/10.3390/d14100817
Chicago/Turabian StylePekkoeva, Svetlana N., Viktor P. Voronin, Aleksej V. Mishin, Alexei M. Orlov, and Svetlana A. Murzina. 2022. "Living in the Extreme: Fatty Acid Profiles and Their Specificity in Certain Tissues of Dominant Antarctic Silverfish, Pleuragramma antarcticum, from the Antarctic Sound (Southern Ocean) Collected during the Austral Summer" Diversity 14, no. 10: 817. https://doi.org/10.3390/d14100817
APA StylePekkoeva, S. N., Voronin, V. P., Mishin, A. V., Orlov, A. M., & Murzina, S. A. (2022). Living in the Extreme: Fatty Acid Profiles and Their Specificity in Certain Tissues of Dominant Antarctic Silverfish, Pleuragramma antarcticum, from the Antarctic Sound (Southern Ocean) Collected during the Austral Summer. Diversity, 14(10), 817. https://doi.org/10.3390/d14100817