Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential
Abstract
:1. Introduction
2. Data Sources
3. Overview of Siboglinid Records
- Oligobrachia haakonmosbiensis Smirnov, 2000
- One location in the Laptev Sea coincides with the landfill where methane flares were registered [13].
- 2.
- Nereilinum murmanicum Ivanov, 1961
- 3.
- Nereilinum squamosum Smirnov, 1999
- 4.
- Polarsternium rugellosum Smirnov, 1999
- 5.
- Crispabrachia yenisey Karaseva, Rimskaya-Korsakova, Ekimova, Gantsevich, Kokarev, Kremnyov, Simakov, Udalov, Vedenin & Malakhov, 2021
- 6.
- Galathealinum karaense Smirnov, Zaitseva& Vedenin, 2020
- 7.
- Polybrachia gorbunovi (Ivanov, 1949)
- 8.
- Siboglinum ekmani Jägersten, 1956
- 9.
- Siboglinum hyperboreum Ivanov, 1960
- 10.
- Siboglinum norvegicum Ivanov, 1960
- 11.
- Siboglinum sp.
- 12.
- Sclerolinum contortum Smirnov, 2000
- 13.
- Siboglinidae gen. sp. 1
- 14.
- Siboglinidae gen. sp. 2
- 15.
- Siboglinidae gen. sp. 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilario, A.; Capa, M.; Dahlgren, T.G.; Halanych, K.M.; Little, C.T.; Thornhill, D.J.; Verna, C.; Glover, A.G. New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE 2011, 6, e16309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goffredi, S.K.; Orphan, V.J.; Rouse, G.W.; Jahnke, L.; Embaye, T.; Turk, K.; Lee, R.; Vrijenhoek, R.C. Evolutionary innovation: A bone-eating marine symbiosis. Environ. Microbiol. 2005, 7, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Rouse, G.W.; Goffredi, S.K.; Vrijenhoek, R. Osedax: Bone-eating marine worms with dwarf males. Science 2004, 305, 668–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goffredi, S.K.; Johnson, S.B.; Vrijenhoek, R.C. Genetic diversity and potential function of microbial symbionts associated with newly discovered species of Osedax polychaete worms. Appl. Environ. Microbiol. 2007, 73, 2314–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felbeck, H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 1981, 213, 336–338. [Google Scholar] [CrossRef]
- Cavanaugh, C.M.; Gardiner, S.L.; Jones, M.L.; Jannasch, H.W.; Waterbury, J.B. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts. Science 1981, 213, 340–342. [Google Scholar] [CrossRef]
- Distel, D.L.; Lane, D.J.; Olsen, G.J.; Giovannoni, S.J.; Pace, B.; Pace, N.R.; Stahl, D.A.; Felbeck, H. Sulfur-oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 1988, 170, 2506–2510. [Google Scholar] [CrossRef] [Green Version]
- Robidart, J.C.; Bench, S.R.; Feldman, R.A.; Novoradovsky, A.; Podell, S.B.; Gaasterland, T.; Allen, E.E.; Felbeck, H. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ. Microbiol. 2008, 10, 727–737. [Google Scholar] [CrossRef]
- Reveillaud, J.; Anderson, R.; Reves-Sohn, S.; Cavanaugh, C.; Huber, J.A. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity. Microbiome 2018, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Webb, M. A new bitentaculate pogonophoran from Hardanger fjorden, Norway. Sarsia 1964, 15, 49–56. [Google Scholar] [CrossRef]
- Webb, M. Additional notes on Sclerolinumbrattstromi (Pogonophora) and the establishment of a new family, Sclerolinidae. Sarsia 1964, 16, 47–58. [Google Scholar] [CrossRef]
- Southward, E.C. On some Pogonophora from the Caribbean and the Gulf of Mexico. Bull. Mar. Sci. 1972, 22, 739–776. [Google Scholar]
- Smirnov, R.V. Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. Sarsia 2000, 85, 141–150. [Google Scholar] [CrossRef]
- Smirnov, R. Morphological characters and classification of the subclass Monilifera (Pogonophora) and the problem of evolution of the bridle in pogonophorans. Russ. J. Mar. Biol. 2008, 34, 359–368. [Google Scholar] [CrossRef]
- Eichinger, I.; Hourdez, S.; Bright, M. Morphology, microanatomy and sequence data of Sclerolinum contortum (Siboglindae, Annelida) of the Gulf of Mexico. Org. Divers. Evol. 2013, 13, 311–329. [Google Scholar] [CrossRef]
- Pimenov, N.; Savvichev, A.; Rusanov, I.; Lein, A.Y.; Ivanov, M. Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiology 2000, 69, 709–720. [Google Scholar] [CrossRef]
- Pimenov, N.; Savvichev, A.; Rusanov, I.; Lein, A.; Egorov, A.; Gebruk, A.; Moskalev, L.; Vogt, P. Microbial processes of carbon cycle as the base of food chain of Håkon Mosby Mud Volcano benthic community. Geo-Mar. Lett. 1999, 19, 89–96. [Google Scholar] [CrossRef]
- Xu, T.; Sun, Y.; Wang, Z.; Sen, A.; Qian, P.; Qiu, J. The morphology, mitogenome, phylogenetic position, and symbiotic bacteria of a new species of Sclerolinum (Annelida: Siboglinidae) in the South China Sea. Front. Mar. Sci. 2022, 8, 793645. [Google Scholar] [CrossRef]
- Lösekann, T.; Robador, A.; Niemann, H.; Knittel, K.; Boetius, A.; Dubilier, N. Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ. Microbiol. 2008, 10, 3237–3254. [Google Scholar] [CrossRef]
- Schmaljohann, R.; Flügel, H.J. Methane-oxidizing bacteria in Pogonophora. Sarsia 1987, 72, 91–98. [Google Scholar] [CrossRef]
- Southward, A.; Southward, E.C.; Dando, P.; Barrett, R.; Ling, R. Chemoautotrophic function of bacterial symbionts in small Pogonophora. J. Mar. Biol. Assoc. UK 1986, 66, 415–437. [Google Scholar] [CrossRef]
- Dando, P.; Southward, A.; Southward, E.; Barrett, R. Possible energy sources for chemoautotrophic prokaryotes symbiotic with invertebrates from a Norwegian fjord. Ophelia 1986, 26, 135–150. [Google Scholar] [CrossRef]
- Aharon, P.; Fu, B. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem. Geol. 2003, 195, 201–218. [Google Scholar] [CrossRef]
- Aharon, P.; Fu, B. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 2000, 64, 233–246. [Google Scholar] [CrossRef]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Joye, S.B.; Boetius, A.; Orcutt, B.N.; Montoya, J.P.; Schulz, H.N.; Erickson, M.J.; Lugo, S.K. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 2004, 205, 219–238. [Google Scholar] [CrossRef]
- Levin, L.A. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2005; pp. 11–56. [Google Scholar]
- Dattagupta, S.; Miles, L.L.; Barnabei, M.S.; Fisher, C.R. The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J. Exp. Biol. 2006, 209, 3795–3805. [Google Scholar] [CrossRef] [Green Version]
- Regnier, P.; Dale, A.W.; Arndt, S.; LaRowe, D.E.; Mogollón, J.; Van Cappellen, P. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Sci. Rev. 2011, 106, 105–130. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, D.; Liang, Q.; Xia, Z.; Chen, L.; Chen, D. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 84–94. [Google Scholar] [CrossRef]
- Bird, K.J.; Charpentier, R.R.; Gautier, D.L.; Houseknecht, D.W.; Klett, T.R.; Pitman, J.K.; Moore, T.E.; Schenk, C.J.; Tennyson, M.E.; Wandrey, C.R. Circum-Arctic resource appraisal: Estimates of undiscovered oil and gas north of the Arctic Circle. In Fact Sheet; Version 1.0 ed.; U. S. Geological Survey: Menlo Park, CA, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H. Oil and gas resource potential north of the Arctic Circle. Geol. Soc. Lond. Mem. 2011, 35, 151–161. [Google Scholar] [CrossRef]
- Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sørensen, K. An overview of the petroleum geology of the Arctic. Geol. Soc. Lond. Mem. 2011, 35, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H. Assessment of undiscovered oil and gas in the Arctic. Science 2009, 324, 1175–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Max, M.D.; Johnson, A.H.; Dillon, W.P. Natural Gas Hydrate-Arctic Ocean Deepwater Resource Potential; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Dmitrievsky, A.N.; Eremin, N.A.; Shabalin, N.A.; Kondratyuk, A.T.; Eremin, A.N. State and prospects for the development of hydrocarbon resources of the Arctic shelf Neft. Offshore 2017, 1, 32–42. (In Russian) [Google Scholar]
- Dmitrieva, D.; Romasheva, N. Sustainable Development of Oil and Gas Potential of the Arctic and Its Shelf Zone: The Role of Innovations. J. Mar. Sci. Eng. 2020, 8, 1003. [Google Scholar] [CrossRef]
- Ivanov, A.V. Pogonophores; USSR Academy of Sciences Publishing House: Leningrad, Russia, 1960; Volume 75. (In Russian) [Google Scholar]
- Ivanov, A.V. Pogonophores and their geographical distribution. In Results of Science I Achievements of Oceanology; Zenkevich, E.A., Ed.; Academy of Sciences of the Soviet Union: Moscow, Russia, 1959; Volume 1, pp. 258–284. (In Russian) [Google Scholar]
- Smirnov, R.V. Systematics and Morphology of Pogonophores of the Arctic and Southern Oceans. Ph.D. Thesis, Zoological Institute of Russian, St. Petersburg, Russia, 2001. (In Russian). [Google Scholar]
- Rimskaya-Korsakova, N.N.; Karaseva, N.P.; Kokarev, V.N.; Simakov, M.I.; Gantsevich, M.M.; Malakhov, V.V. First Discovery of Pogonophora (Annelida, Siboglinidae) in the Kara Sea Coincide with the Area of High Methane Concentration. Dokl. Biol. Sci. 2020, 490, 25–27. [Google Scholar] [CrossRef]
- Kanafina, M.; Karaseva, N.; Zakharov, D.; Golikov, A.; Malakhov, V. New Data on Distribution of Nereilinum murmanicum (Annelida, Siboglinidae) in the Barents Sea. Dokl. Biol. Sci. 2022, 502, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, R.V.; Zaitseva, O.V.; Vedenin, A.A. A remarkable pogonophoran from a desalted shallow near the mouth of the Yenisey River in the Kara Sea, with the description of a new species of the genus Galathealinum (Annelida: Pogonophora: Frenulata). Zoosystematica Ross. 2020, 29, 138–154. [Google Scholar] [CrossRef]
- Smirnov, R.V. A new genus and two new species of pogonophora from the Arctic Ocean. Russ. J. Mar. Biol. 1999, 25, 312–319. [Google Scholar]
- Karaseva, N.; Rimskaya-Korsakova, N.; Ekimova, I.; Gantsevich, M.; Kokarev, V.; Kremnyov, S.; Simakov, M.; Udalov, A.; Vedenin, A.; Malakhov, V. A new genus of frenulates (Annelida: Siboglinidae) from shallow waters of the Yenisey River estuary, Kara Sea. Invertebr. Syst. 2021, 35, 857–875. [Google Scholar] [CrossRef]
- Kanafina, M.M.; Gabidullina, R.I.; Rimskaya-Korsakova, N.N.; Zakharov, D.V.; Sabirov, R.M.; Golikov, A.V. Functional morphology and ecology of the Arctic pogonophore Nereilinum murmanicum Ivanov, 1961 (Siboglinidae, Annelida). Proc. Kazan University. Nat. Sci./Uchenye Zap. Kazan. Universiteta. Seriya Estestv. Nauk. 2021, 163, 25–28. [Google Scholar] [CrossRef]
- Rimskaya-Korsakova, N.N.; Karaseva, N.P.; Osadchiev, A.A.; Semiletov, I.P.; Gantsevich, M.M.; Malakhov, V.V. Pogonophora (Annelida, Siboglinidae) record in the St. Anna Trough (Kara Sea) in the area of gas hydrate dissociation. Rep. Acad. Sci. 2022. in press. (In Russian) [Google Scholar]
- Karaseva, N.P.; Rimskaya-Korsakova, N.N.; Kokarev, V.N.; Simakov, M.I.; Smirnov, R.V.; Gantsevich, M.M.; Malakhov, V.V. Discovery of siboglinids (Annelida, Siboglinidae) in the Laptev Sea are confined to areas of methane seeps. Dokl. Biol. Sci. 2023. in press. (In Russian) [Google Scholar]
- Karaseva, N.P.; Rimskaya-Korsakova, N.N.; Kokarev, V.N.; Simakov, M.I.; Smirnov, R.V.; Gantsevich, M.M.; Malakhov, V.V. Discovery of siboglinids (Annelida, Siboglinidae) in the estuaries of the largest Arctic rivers are associated with permafrost gas hydrates. Dokl. Biol. Sci. 2023. in press. (In Russian) [Google Scholar]
- Sen, A.; Duperron, S.; Hourdez, S.; Piquet, B.; Léger, N.; Gebruk, A.; Le Port, A.-S.; Svenning, M.M.; Andersen, A.C. Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLoS ONE 2018, 13, e0209273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Didriksen, A.; Hourdez, S.; Svenning, M.M.; Rasmussen, T.L. Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. 2020, 10, 1339–1351. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, R.V. A revision of the Oligobrachiidae (Annelida: Pogonophora), with notes on the morphology and distribution of Oligobrachia haakonmosbiensis Smirnov. Mar. Biol. Res. 2014, 10, 972–982. [Google Scholar] [CrossRef]
- Karaseva, N.P.; Rimskaya-Korsakova, N.N.; Ekimova, I.A.; Kokarev, V.N.; Simakov, M.I.; Gantsevich, M.M.; Malakhov, V.V. The first discovery of pogonophores (Annelida, Siboglinidae) in the East Siberian Sea coincides with the areas of methane seeps. Dokl. Biol. Sci. 2021, 501, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V. Deux genres nouveaux de PogonophoresdiplobrachiauxNereilinum et Siboglinoides. Cah. Biol. Mar. 1961, 2, 381–397. [Google Scholar]
- Moskalev, L.I. Pogonophora in the Barents Sea. Doklady AN SSSR 1961, 137, 730–731. (In Russian) [Google Scholar]
- Karaseva, N.; Kanafina, M.; Gantsevich, M.; Rimskaya-Korsakova, N.; Zakharov, D.; Golikov, A.; Smirnov, R.; Malakhov, V. Distribution of Nereilinum murmanicum (Annelida, Siboglinidae) in the Barents Sea in the Context of Its Oil and Gas Potential. J. Mar. Sci. Eng. 2021, 9, 1339. [Google Scholar] [CrossRef]
- Flügel, H.J. A new species of Siboglinum (Pogonophora) from the North Atlantic and notes on Nereilinummurmanicum Ivanov. Sarsia 1990, 75, 233–241. [Google Scholar] [CrossRef]
- Ivanov, A.V. A new representative of the class Pogonophora. Zool. J. 1949, 28, 79–84. (In Russian) [Google Scholar]
- Ivanov, A.V. Neue Pogonophora aus dem nordwestlichen Teil des StillenOzeans. Zool. Jahrbücher Abt. Für Syst. Okol. Und Geogr. Tiere 1957, 85, 431–500. [Google Scholar]
- Ivanov, A.V. Pogonofory (Pogonophora); Fauna SSSR. 75; Pavovsky, E.N., Ed.; ANSSSR: Moscow, Russia; Leningrad, Russia, 1960. [Google Scholar]
- Little, C. A note on salinity tolerance in Siboglinumekmani (Pogonophora). Sarsia 1969, 38, 87–90. [Google Scholar] [CrossRef]
- Southward, E.C. Pogonophora of the northwest Atlantic: Nova Scotia to Florida. Smithson. Contrib. Zool. 1971, 88, 1–29. [Google Scholar] [CrossRef]
- Flugel, H.J.; Langhof, I. Pogonophora in the Skagerrak. Sarsia 1982, 67, 211–212. [Google Scholar] [CrossRef]
- Cunha, M.R.; Paterson, G.L.J.; Amaro, T.; Blackbird, S.; de Stigter, H.C.; Ferreira, C.; Glover, A.; Hilário, A.; Kiriakoulakis, K.; Neal, L.; et al. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2433–2447. [Google Scholar] [CrossRef] [Green Version]
- Southward, E.C.; Southward, A.J. On some Pogonophora from the north-east Atlantic, including two new species. J. Mar. Biol. Assoc. United Kingd. 1958, 37, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Dando, P.; Southward, A.; Southward, E.; Lamont, P.; Harvey, R. Interactions between sediment chemistry and frenulatepogonophores (Annelida) in the north-east Atlantic. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 966–996. [Google Scholar] [CrossRef]
- Jägersten, G. Investigatons on Siboglinumekmani, N. Sp., Encountered in Skagerak: With Some General Remarks on the Group Pogonophora. Zool. Bijdr. 1956, 31, 211–252. [Google Scholar]
- Webb, M. Notes on the distribution of Pogonophora in Norwegian fjords. Sarsia 1965, 18, 11–15. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Lazar, C.S.; Dinasquet, J.; Pignet, P.; Prieur, D.; Toffin, L. Active Archaeal Communities at Cold Seep Sediments Populated by Siboglinidae Tubeworms from the Storegga Slide. Microb. Ecol. 2010, 60, 516–527. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Rapp, H.T.; Thorseth, I.H.; Lilley, M.D.; Barriga, F.J.; Baumberger, T.; Flesland, K.; Fonseca, R.; Früh-Green, G.L.; Jorgensen, S.L. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 2010, 1, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southward, E.C. New Pogonophora from the northeast Pacific Ocean. Can. J. Zool. 1969, 47, 395–403. [Google Scholar] [CrossRef]
- Grønlie, O. Contributions to the Quaternary Geology of Novaya Zemlya. Report of the Scientific Results of the Norwegian Expedition to Novaya Zemlya 1921, Vol. 21; AW BroggersBoktrykkeri: Oslo, Norway, 1924. [Google Scholar]
- Panov, D. Geological structure of the Barents Sea in connection with the morphology of its coasts. Sci. Notes Mosc. State Univ. Ser Geogr. 1940, 48, 75–112. (In Russian) [Google Scholar]
- Matishov, G.G. Bottom geomorphology and the problem of Pleistocene glaciation of the Barents Sea shelf. Geomorphology 1977, 2, 91–98. (In Russian) [Google Scholar]
- Dobrovolsky, A.; Zalogin, B. Seas of the USSR; Publishing House of Moscow State University: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Stoupakova, A.V. Structure and oil and gas content of the Barents-Kara shelf and adjacent territories. Geol. Oil Gas 2011, 6, 99–115. (In Russian) [Google Scholar]
- Trofimuk, A.; Makogon Yu Tolkachev, M. Gas hydrate deposits are a new reserve of energy resources. Geol. Oil Gas 1981, 10, 15–22. (In Russian) [Google Scholar]
- Trofimuk, A.; Chersky, N.; Tsarev, V. Gas hydrates are new sources of hydrocarbons. Priroda 1979, 1, 18–27. (In Russian) [Google Scholar]
- Trofimuk, A.; Chersky, N.; Tsarev, V. Peculiarities of natural gas accumulation in the hydrate formation zones of the World Ocean. Doklady AN SSSR 1973, 212, 931–934. (In Russian) [Google Scholar]
- Chersky, N.V.; Tsarev, V.P.; Nikitin, S.P. Research and Forecasting of Conditions for the Accumulation of Gas Resources in Gas Hydrate Deposits; Yakut Branch of the Siberian Branch of the USSR Academy of Sciences: Yakutsk, Russia, 1983. (In Russian) [Google Scholar]
- Kvenvolden, K.A. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 1999, 96, 3420–3426. [Google Scholar] [CrossRef] [Green Version]
- Kvenvolden, K.A. Natural gas hydrate occurrence and issues. Ann. N. Y. Acad. Sci. 1994, 715, 232–246. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Ginsburg, G.; Soloviev, V. Worldwide distribution of subaquatic gas hydrates. Geo-Mar. Lett. 1993, 13, 32–40. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Methane hydrate—A major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Barnard, L.A. Hydrates of Natural Gas in Continental Margins: Environmental Processes: Model Investigations of Margin Environmental and Tectonic Processes. In Studies in Continental Margin Geology; AAPG: Tulsa, OK, USA, 1982. [Google Scholar]
- Ginsburg, G.; Solovyov, V. Submarine Gas Hydrates; VNII Okeanologia: Moscow, Russia, 1994. (In Russian) [Google Scholar]
- Ginsburg, G.; Gramberg, I.; Solovyov, V. Geology of Submarine Gas Hydrates. Sov. Geologiya. 1990, 11, 12–19. (In Russian) [Google Scholar]
- Ginsburg, G.; Ivanov, V.; Solovyov, V. Hydrates of Natural Gas in the Bowels of the World Ocean. Oil and Gas Content of the World Ocean; PGO “Sevmorgeologiya”: Leningrad, Russia, 1984; pp. 141–158. (In Russian) [Google Scholar]
- Cherskiy, N.; Tsarev, V.; Nikitin, S. Investigation and Prediction of Conditions of Accumulation of Gas Resources in Gas-Hydrate Pools (East Siberian Craton). Pet. Geol. Dig. Russ. Lit. Pet. Geol. 1984, 21, 71–76. [Google Scholar]
- Dillon, W.P. Gas hydrates in the ocean environment. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 473–486. [Google Scholar]
- Makagon, Y. Natural gas hydrates: Distribution, models, resources. Ross. Khimicheskij Zhurnal 2003, 47, 70–79. (In Russian) [Google Scholar]
- Klauda, J.B.; Sandler, S.I. Global distribution of methane hydrate in ocean sediment. Energy Fuels 2005, 19, 459–470. [Google Scholar] [CrossRef]
- Wallmann, K.; Pinero, E.; Burwicz, E.; Haeckel, M.; Hensen, C.; Dale, A.; Ruepke, L. The global inventory of methane hydrate in marine sediments: A theoretical approach. Energies 2012, 5, 2449–2498. [Google Scholar] [CrossRef] [Green Version]
- Pinero, E.; Marquardt, M.; Hensen, C.; Haeckel, M.; Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 2013, 10, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ryu, B.; Sun, Z.; Wu, N.; Cao, H.; Geng, W.; Zhang, X.; Jia, Y.; Xu, C.; Guo, L. Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective. J. Nat. Gas Sci. Eng. 2019, 65, 82–107. [Google Scholar] [CrossRef]
- Gaidukova, O.; Misyura, S.; Strizhak, P. Key Areas of Gas Hydrates Study. Energies 2022, 15, 1799. [Google Scholar] [CrossRef]
- Solovyov, V.; Ginsburg, G.; Telepnev, E.; Mikhalyuk, Y.L. Cryogeothermy and Natural Gas Hydrates in the Depths of the Arctic Ocean; PGO “Sevmorgeologiya”: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Solovyov, V.A.; Ginzburg, G.D. Arctic Seas of Russia. Conditions of gas-hydradic potential and potentially gas-hydrate-bearing water areas. In Geology and Mineral Resources of Russian Shelves Atlas; Nauchny Mir: Moscow, Russia, 2003; pp. 1–32. (In Russian) [Google Scholar]
- Collet, T.S.; Dallimore, S.R. Permafrost Associated Gas Hydrate. In Natural Gas Hydrate in Oceanic and Permafrost Environments; Max, M.D., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; pp. 43–58. [Google Scholar]
- Romanovskii, N.; Eliseeva, A.; Gavrilov, A.; Tipenko, G.; Hubberten, H.-W. The long-term dynamics of the permafrost and gas hydrate stability zone on rifts of the east Siberian arctic shelf (Report 1). Kriosf. Zemli 2005, 9, 42–53. (In Russian) [Google Scholar]
- Shakhova, N.; Semiletov, I.; Panteleev, G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Shakhova, N.; Sergienko, V.; Semiletov, I. The contribution of the East Siberian shelf to the modern methane cycle. Bull. Russ. Acad. Sci. 2009, 79, 507–518. (In Russian) [Google Scholar] [CrossRef]
- Khimenkov, A.N.; Koshurnikov, A.V.; Stanilovskaya, Y.V. Geosystems of gas-saturated permafrost. Arct. Antarct. 2020, 2, 65–105. (In Russian) [Google Scholar] [CrossRef]
- Ananiev, V. Russia’s “hands do not reach” to the Arctic shelf. Oil Gas J. 2010, 5, 1–38. (In Russian) [Google Scholar]
- Kaminsky, V.D.; Chernykh, A.A.; Medvedeva TYuSuprunenko, O.I.; Suvorova, E.B. The Kara Sea is a promising testing ground for the study and development of hydrocarbon resources. Neft. Offshore 2020, 101, 82–89. (In Russian) [Google Scholar]
- Harms, I.; Hübner, U.; Backhaus, J.; Kulakov, M.; Stanovoy, V.; Stepanets, O.; Kodina, L.; Schlitzer, R. Salt intrusions in Siberian river estuaries: Observations and model experiments in Ob and Yenisei. In Siberian River Run-Off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance, Proceedings in Marine Science; 2003; pp. 27–45. Available online: https://core.ac.uk/reader/11750361 (accessed on 29 October 2022).
- Dolgopolova, E.N. Regularities in the motion of water and sediments at the mouth of a river of estuarine-deltaic type: Case study of the Yenisei River. Water Resour. 2015, 42, 198–207. [Google Scholar] [CrossRef]
- Gebhardt, A.C.; Schoster, F.; Gaye-Haake, B.; Beeskow, B.; Rachold, V.; Unger, D.; Ittekkot, V. The turbidity maximum zone of the Yenisei River (Siberia) and its impact on organic and inorganic proxies. Estuar. Coast. Shelf Sci. 2005, 65, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.E.; Semiletov, I.P.; Belcheva, N.N. Great Siberian rivers as sources of methane on the Arctic shelf. Dokl. Earth Sci. 2007, 415, 734–736. [Google Scholar] [CrossRef]
- Guo, L.; Semiletov, I.; Gustafsson, Ö.; Ingri, J.; Andersson, P.; Dudarev, O.; White, D. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Alekseev, V.; Semiletov, I. Forecast of methane emissions on the East Siberian shelf. Rep. Acad. Sci. 2010, 430, 533–536. (In Russian) [Google Scholar]
- Sergienko, V.; Lobkovskiy, L.; Semiletov, I.; Dudarev, O.; Dmitrevskiy, N.; Shakhova, N.; Romanovskiy, N.; Kosmach, D.; Nikolskiy, D.; Nikiforov, S. Underwater permafrost degradation and destruction of hydrates of the shelf of the Eastern Arctic seas as a possible cause of “methane catastrophe”: Some results comprehensive research in 2011. Dokl. Akad. Nauk. 2012, 445, 330–335. (In Russian) [Google Scholar]
- Bussmann, I. Distribution of methane in the Lena Delta and Buor Khaya Bay, Russia. Biogeosciences 2013, 10, 4641–4652. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, O.A.; Zaboykina, Y.u.G.; Kokorev, V.A.; Yurganov, L.N. Possible causes of methane emission on the shelf of the Eastern Arctic seas. Ice Snow 2014, 54, 69–81. (In Russian) [Google Scholar]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Southward, E.C. A new species of Galathealinum (Pogonophora) from the Canadian Arctic. Can. J. Zool. 1962, 40, 385–389. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Yu, Y. The Mackenzie Estuary of the Arctic Ocean. In Estuaries; Wangersky, P.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 91–120. [Google Scholar]
- Majorowicz, J.; Osadetz, K.; Safanda, J. Gas Hydrate Formation and Dissipation Histories in the Northern Margin of Canada: Beaufort-Mackenzie and the Sverdrup Basins. J. Geophys. Res. 2012, 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Majorowicz, J.; Safanda, J.; Osadetz, K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada. Clim. Past 2012, 8, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Osadetz, K.G.; Morrell, G.R.; Dixon, J.; Dietrich, J.R.; Snowdon, L.R.; Dallimore, S.R.; Majorowicz, J.A. Beaufort Sea–Mackenzie Delta basin: A review of conventional and nonconventional (gas hydrate) petroleum reserves and undiscovered resources. Geol. Surv. Can. 2005, 585, 1–19. [Google Scholar]
- Majorowicz, J.A.; Hannigan, P.K. Natural Gas Hydrates in the Offshore Beaufort–Mackenzie Basin—Study of a Feasible Energy Source II. Nat. Resour. Res. 2000, 9, 201–214. [Google Scholar] [CrossRef]
- Bily, C.; Dick, J.W.L. Naturally Occurring Gas Hydrates in the Mackenzie Delta, N.W.T.1. Bull. Can. Pet. Geol. 1974, 22, 340–352. [Google Scholar] [CrossRef]
- Majorowicz, J.; Osadetz, K. Gas hydrate distribution and volume in Canada. AAPG Bull. 2001, 85, 1211–1230. [Google Scholar] [CrossRef]
- McLellan, P.; Gillen, K.; Podetz, C.; Dallimore, S.; Inoue, T.; Hancock, S. In situ stresses in the Mallik area. Bull. Geol. Surv. Can. 2005, 585, 133. [Google Scholar]
- Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S.R. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada. J. Geophys. Res. Solid Earth 2007, 112, B10311. [Google Scholar] [CrossRef] [Green Version]
- Majorowicz, J.; Osadetz, K.; Safanda, J. Onset and Stability of Gas Hydrates under Permafrost in an Environment of Surface Climatic Change in the Beaufort-Mackenzie basin-Past and Future. In AGU Fall Meeting Abstracts, U34A-02, Proceedings of the 6th International Conference on Gas Hydrates: Vancouver, BC, Canada, 6–10 July 2008; Available online: https://ui.adsabs.harvard.edu/abs/2008AGUFM.U34A..02M/abstract (accessed on 28 October 2022).
- Osadetz, K.G.; Chen, Z. A re-evaluation of Beaufort Sea-Mackenzie Delta basin gas hydrate resource potential: Petroleum system approaches to non-conventional gas resource appraisal and geologically-sourced methane flux. Bull. Can. Pet. Geol. 2010, 58, 56–71. [Google Scholar] [CrossRef]
- Schauer, U.; Loeng, H.; Rudels, B.; Ozhigin, V.K.; Dieck, W. Atlantic water flow through the Barents and Kara Seas. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 2281–2298. [Google Scholar] [CrossRef]
- Lien, V.S.; Trofimov, A.G. Formation of Barents Sea branch water in the north-eastern Barents Sea. Polar Res. 2013, 32, 18905. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, I.A.; Rudels, B.; Kirillov, S.A.; Aksenov, Y.O.; Lien, V.S.; Ivanov, V.V.; Schauer, U.; Polyakov, I.V.; Coward, A.; Barber, D.G. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. J. Geophys. Res. Ocean. 2015, 120, 5158–5178. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.; Viting, K.; Frey, D.; Demeshko, D.; Dzhamalova, A.; Nurlibaeva, A.; Gordey, A.; Krechik, V.; Spivak, E.; Semiletov, I. Structure and Circulation of Atlantic Water Masses in the St. Anna Trough in the Kara Sea. Front. Mar. Sci. 2022, 9, 915674. [Google Scholar] [CrossRef]
- Reagan, M.T.; Moridis, G.J.; Elliott, S.M.; Maltrud, M. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Giustiniani, M.; Tinivella, U.; Jakobsson, M.; Rebesco, M. Arctic ocean gas hydrate stability in a changing climate. J. Geol. Res. 2013, 2013, 783969. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef] [Green Version]
- Baranov, B.; Galkin, S.; Vedenin, A.; Dozorova, K.; Gebruk, A.; Flint, M. Methane seeps on the outer shelf of the Laptev Sea: Characteristic features, structural control, and benthic fauna. Geo-Mar. Lett. 2020, 40, 541–557. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I. Characteristic features of carbon cycle in the shallow shelf of the eastern sector of Russian Arctic. Environ. Clim. Changes Catastr. 2008, 4, 167–181. [Google Scholar]
- Sirenko, B.; Denisenko, S.; Deubel, H.; Rachor, E. Deep water communities of the Laptev Sea and adjacent parts of the Arctic Ocean. In Fauna and Ecosystems of the Laptev Sea and Adjacent Deep Waters of the Arctic Part I St-Petersburg: ZIN RAS; 2004; Volume 54, pp. 28–73. Available online: https://www.researchgate.net/publication/303284538_Deep_Water_Communities_of_the_Laptev_Sea_and_Adjacent_Parts_of_the_Arctic_Ocean (accessed on 28 October 2022). (In Russian)
- Vedenin, A.; Galkin, S.; Mironov, A.N.; Gebruk, A. Vertical zonation of the Siberian Arctic benthos: Bathymetric boundaries from coastal shoals to deep-sea Central Arctic. PeerJ 2021, 9, e11640. [Google Scholar] [CrossRef]
- Anderson, B.; Hancock, S.; Wilson, S.; Enger, C.; Collett, T.; Boswell, R.; Hunter, R. Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Operational summary, history matching, and interpretations. Mar. Pet. Geol. 2011, 28, 478–492. [Google Scholar] [CrossRef]
- Ambrosimov, A.K. Methane seeps and hydrophysical anomalies of the East Siberian Sea as a response to climate change. Ecol. Syst. Devices 2020, 48–53. (In Russian) [Google Scholar] [CrossRef]
- Anisimov, O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2007, 2, 045016. [Google Scholar] [CrossRef]
- Nekhaev, I.O. Skenea profunda (Vetigastropoda: Skeneidae) in the central Arctic. Ruthenica 2022, 32, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Krol, E.N.; Nekhaev, I.O. Redescription of Leptogyra bujnitzkii (Gorbunov, 1946) comb. nov., the first representative of the gastropod subclass Neomphaliones from the high Arctic. Zootaxa 2020, 4759, 446–450. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaseva, N.P.; Rimskaya-Korsakova, N.N.; Smirnov, R.V.; Udalov, A.A.; Mokievsky, V.O.; Gantsevich, M.M.; Malakhov, V.V. Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential. Diversity 2022, 14, 1061. https://doi.org/10.3390/d14121061
Karaseva NP, Rimskaya-Korsakova NN, Smirnov RV, Udalov AA, Mokievsky VO, Gantsevich MM, Malakhov VV. Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential. Diversity. 2022; 14(12):1061. https://doi.org/10.3390/d14121061
Chicago/Turabian StyleKaraseva, Nadezda P., Nadezhda N. Rimskaya-Korsakova, Roman V. Smirnov, Alexey A. Udalov, Vadim O. Mokievsky, Mikhail M. Gantsevich, and Vladimir V. Malakhov. 2022. "Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential" Diversity 14, no. 12: 1061. https://doi.org/10.3390/d14121061
APA StyleKaraseva, N. P., Rimskaya-Korsakova, N. N., Smirnov, R. V., Udalov, A. A., Mokievsky, V. O., Gantsevich, M. M., & Malakhov, V. V. (2022). Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential. Diversity, 14(12), 1061. https://doi.org/10.3390/d14121061