In Silico Assessment of Probe-Capturing Strategies and Effectiveness in the Spider Sub-Lineage Araneoidea (Order: Araneae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources of UCE Loci
2.2. Genome Assembly
Organism Name | Assembly Accession | Total Sequence Length | Assembly Level | Submission Date | Contig N50 | Coverage | Reference |
---|---|---|---|---|---|---|---|
Acanthoscurria geniculata | GCA_000661875.1 | 7,178,402,394 | Contig | 2014-04-29 | 541 | 21.5× | [32] |
Anelosimus studiosus | GCA_008297655.1 | 2,033,432,615 | Scaffold | 2019-09-05 | 1132 | 79.0× | [33] |
Araneus ventricosus | GCA_013235015.1 | 3,656,621,265 | Scaffold | 2019-08-02 | 22,999 | 70× | [34] |
Argiope bruennichi | GCA_015342795.1 | 1,670,285,661 | Chromosome | 2020-11-16 | 284,772 | 70× | [35] |
Dolomedes plantarius | GCA_907164885.1 | 2,381,335,874 | Chromosome | 2021-05-16 | 292,830 | 19.4× | [36] |
Dysdera silvatica | GCA_006491805.2 | 1,365,686,336 | Scaffold | 2021-07-07 | 21,954 | 96.9× | [37] |
Latrodectus hesperus | GCA_000697925.2 | 1,233,806,489 | Scaffold | 2018-02-05 | 15,961 | 80.0× | [38] |
Loxosceles reclusa | GCA_001188405.1 | 3,262,478,678 | Contig | 2015-04-27 | 1834 | 55× | [38] |
Oedothorax gibbosus | GCA_019343175.1 | 821,427,276 | Chromosome | 2021-08-05 | 979,336 | 14.0× | [39] |
Parasteatoda tepidariorum | GCA_000365465.3 | 1,228,972,128 | Scaffold | 2019-06-14 | 66,479 | 48.0× | [40] |
Pardosa pseudoannulata | GCA_008065355.1 | 4,207,954,893 | Scaffold | 2019-08-22 | 23,226 | 423.95× | [41] |
Stegodyphus dumicola | GCF_010614865.1 | 2,551,871,595 | Scaffold | 2020-02-14 | 254,130 | 49.0× | [42] |
Stegodyphus mimosarum | GCA_000611955.2 | 2,738,704,917 | Scaffold | 2014-08-01 | 40,146 | 86.0× | [32] |
Trichonephila clavipes | GCA_002102615.1 | 2,439,301,466 | Scaffold | 2017-04-20 | 7993 | 140.0× | [43] |
2.3. Design of UCE Probe Set for Araneidae
2.4. In Silico Simulation of Probe Sets Aimed at Capturing Affinity
2.5. Reconstruction of Phylogenomic Tree Using the Captured Data Matrix for Each Probe Set
3. Results
3.1. De Novo Genome Assembly
3.2. Probe Detection
3.3. In Silico Testing of Capture Efficiency
3.4. Capture Rates and Number of Loci in Various Occupancies
3.5. Tree Reconstruction Using Simulated Captured Loci
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, C.F.; Bacon, C.D.; Antonelli, A.; Cano, Á.; Hofmann, T. An Introduction to Plant Phylogenomics with a Focus on Palms. Bot. J. Linn. Soc. 2016, 182, 234–255. [Google Scholar] [CrossRef] [Green Version]
- Pettengill, J.B.; Luo, Y.; Davis, S.; Chen, Y.; Gonzalez-Escalona, N.; Ottesen, A.; Rand, H.; Allard, M.W.; Strain, E. An Evaluation of Alternative Methods for Constructing Phylogenies from Whole Genome Sequence Data: A Case Study with Salmonella. PeerJ 2014, 2, e620. [Google Scholar] [CrossRef] [Green Version]
- Brewer, M.S.; Cotoras, D.D.; Croucher, P.J.P.; Gillespie, R.G. New Sequencing Technologies, the Development of Genomics Tools, and Their Applications in Evolutionary Arachnology. J. Arachnol. 2014, 42, 1–15. [Google Scholar] [CrossRef]
- Giribet, G. New Animal Phylogeny: Future Challenges for Animal Phylogeny in the Age of Phylogenomics. Org. Divers. Evol. 2016, 16, 419–426. [Google Scholar] [CrossRef]
- Hirsch, C.D.; Evans, J.; Buell, C.R.; Hirsch, C.N. Reduced Representation Approaches to Interrogate Genome Diversity in Large Repetitive Plant Genomes. Brief. Funct. Genom. 2014, 13, 257–267. [Google Scholar] [CrossRef]
- Ekblom, R.; Galindo, J. Applications of next Generation Sequencing in Molecular Ecology of Non-Model Organisms. Heredity 2011, 107, 1–15. [Google Scholar] [CrossRef] [Green Version]
- McCormack, J.E.; Faircloth, B.C.; Crawford, N.G.; Gowaty, P.A.; Brumfield, R.T.; Glenn, T.C. Ultraconserved Elements Are Novel Phylogenomic Markers That Resolve Placental Mammal Phylogeny When Combined with Species-Tree Analysis. Genome Res. 2012, 22, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Mamanova, L.; Coffey, A.J.; Scott, C.E.; Kozarewa, I.; Turner, E.H.; Kumar, A.; Howard, E.; Shendure, J.; Turner, D.J. Target-Enrichment Strategies for next-Generation Sequencing. Nat. Methods 2010, 7, 111–118. [Google Scholar] [CrossRef]
- Faircloth, B.C. Identifying Conserved Genomic Elements and Designing Universal Bait Sets to Enrich Them. Methods Ecol. Evol. 2017, 8, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.M.; Williams, J.L.; Lucky, A. Understanding UCEs: A Comprehensive Primer on Using Ultraconserved Elements for Arthropod Phylogenomics. Insect Syst. Divers. 2019, 3, 3. [Google Scholar] [CrossRef]
- Kulkarni, S.; Wood, H.; Lloyd, M.; Hormiga, G. Spider-Specific Probe Set for Ultraconserved Elements Offers New Perspectives on the Evolutionary History of Spiders (Arachnida, Araneae). Mol. Ecol. Resour. 2020, 20, 185–203. [Google Scholar] [CrossRef]
- Ryu, T.; Seridi, L.; Ravasi, T. The Evolution of Ultraconserved Elements with Different Phylogenetic Origins. BMC Evol. Biol. 2012, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Bejerano, G.; Pheasant, M.; Makunin, I.; Stephen, S.; Kent, W.J.; Mattick, J.S.; Haussler, D. Ultraconserved Elements in the Human Genome. Science 2004, 304, 1321–1325. [Google Scholar] [CrossRef] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.W.; Richards, S.; et al. Evolutionarily Conserved Elements in Vertebrate, Insect, Worm, and Yeast Genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [Green Version]
- Habic, A.; Mattick, J.S.; Calin, G.A.; Krese, R.; Konc, J.; Kunej, T. Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A J. Integr. Biol. 2019, 23, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, M.H.; Henderson, J.B.; Esposito, L.; Trautwein, M. Genomic Characterization and Curation of UCEs Improves Species Tree Reconstruction. Syst. Biol. 2021, 70, 307–321. [Google Scholar] [CrossRef]
- Hedin, M.; Derkarabetian, S.; Alfaro, A.; Ramírez, M.J.; Bond, J.E. Phylogenomic Analysis and Revised Classification of Atypoid Mygalomorph Spiders (Araneae, Mygalomorphae), with Notes on Arachnid Ultraconserved Element Loci. PeerJ 2019, 7, e6864. [Google Scholar] [CrossRef] [Green Version]
- Faircloth, B.C.; McCormack, J.E.; Crawford, N.G.; Harvey, M.G.; Brumfield, R.T.; Glenn, T.C. Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales. Syst. Biol. 2012, 61, 717–726. [Google Scholar] [CrossRef]
- Thom, G.; Amaral, F.R.D.; Hickerson, M.J.; Aleixo, A.; Araujo-Silva, L.E.; Ribas, C.C.; Choueri, E.; Miyaki, C.Y. Phenotypic and Genetic Structure Support Gene Flow Generating Gene Tree Discordances in an Amazonian Floodplain Endemic Species. Syst. Biol. 2018, 67, 700–718. [Google Scholar] [CrossRef] [Green Version]
- Winker, K.; Glenn, T.C.; Faircloth, B.C. Ultraconserved Elements (UCEs) Illuminate the Population Genomics of a Recent, High-Latitude Avian Speciation Event. PeerJ 2018, 6, e5735. [Google Scholar] [CrossRef] [Green Version]
- Meiklejohn, K.A.; Faircloth, B.C.; Glenn, T.C.; Kimball, R.T.; Braun, E.L. Analysis of a Rapid Evolutionary Radiation Using Ultraconserved Elements: Evidence for a Bias in Some Multispecies Coalescent Methods. Syst. Biol. 2016, 65, 612–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossert, S.; Murray, E.A.; Pauly, A.; Chernyshov, K.; Brady, S.G.; Danforth, B.N. Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on Pseudapis Bees. Syst. Biol. 2021, 70, 803–821. [Google Scholar] [CrossRef] [PubMed]
- Starrett, J.; Derkarabetian, S.; Hedin, M.; Bryson, R.W.; McCormack, J.E.; Faircloth, B.C. High Phylogenetic Utility of an Ultraconserved Element Probe Set Designed for Arachnida. Mol. Ecol. Resour. 2017, 17, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Gloor, D.; Nentwig, W.; Blick, T.; Kropf, C. World Spider Catalog. Nat. Hist. Mus. Bern. 2022. [Google Scholar] [CrossRef]
- Selden, P.A.; Shear, W.A.; Sutton, M.D. Fossil Evidence for the Origin of Spider Spinnerets, and a Proposed Arachnid Order. Proc. Natl. Acad. Sci. USA 2008, 105, 20781–20785. [Google Scholar] [CrossRef] [Green Version]
- Garrison, N.L.; Rodriguez, J.; Agnarsson, I.; Coddington, J.A.; Griswold, C.E.; Hamilton, C.A.; Hedin, M.; Kocot, K.M.; Ledford, J.M.; Bond, J.E. Spider Phylogenomics: Untangling the Spider Tree of Life. PeerJ 2016, 4, e1719. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Su, Y.-C.; Ho, S.Y.W.; Kuntner, M.; Ono, H.; Liu, F.; Chang, C.-C.; Warrit, N.; Sivayyapram, V.; Aung, K.P.P.; et al. Phylogenomic Analysis of Ultraconserved Elements Resolves the Evolutionary and Biogeographic History of Segmented Trapdoor Spiders. Syst. Biol. 2021, 70, 1110–1122. [Google Scholar] [CrossRef]
- Dimitrov, D.; Benavides, L.R.; Arnedo, M.A.; Giribet, G.; Griswold, C.E.; Scharff, N.; Hormiga, G. Rounding up the Usual Suspects: A Standard Target-Gene Approach for Resolving the Interfamilial Phylogenetic Relationships of Ecribellate Orb-Weaving Spiders with a New Family-Rank Classification (Araneae, Araneoidea). Cladistics 2017, 33, 221–250. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Chikhi, R.; Medvedev, P. Informed and Automated K-Mer Size Selection for Genome Assembly. Bioinformatics 2014, 30, 31–37. [Google Scholar] [CrossRef]
- Jackman, S.D.; Vandervalk, B.P.; Mohamadi, H.; Chu, J.; Yeo, S.; Hammond, S.A.; Jahesh, G.; Khan, H.; Coombe, L.; Warren, R.L.; et al. ABySS 2.0: Resource-Efficient Assembly of Large Genomes Using a Bloom Filter. Genome Res. 2017, 27, 768–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanggaard, K.W.; Bechsgaard, J.S.; Fang, X.; Duan, J.; Dyrlund, T.F.; Gupta, V.; Jiang, X.; Cheng, L.; Fan, D.; Feng, Y.; et al. Spider Genomes Provide Insight into Composition and Evolution of Venom and Silk. Nat. Commun. 2014, 5, 3765. [Google Scholar] [CrossRef] [PubMed]
- Purcell, J.; Pruitt, J.N. Are Personalities Genetically Determined? Inferences from Subsocial Spiders. BMC Genom. 2019, 20, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, N.; Nakamura, H.; Ohtoshi, R.; Moran, D.A.P.; Shinohara, A.; Yoshida, Y.; Fujiwara, M.; Mori, M.; Tomita, M.; Arakawa, K. Orb-Weaving Spider Araneus Ventricosus Genome Elucidates the Spidroin Gene Catalogue. Sci. Rep. 2019, 9, 8380. [Google Scholar] [CrossRef] [PubMed]
- Sheffer, M.M.; Hoppe, A.; Krehenwinkel, H.; Uhl, G.; Kuss, A.W.; Jensen, L.; Jensen, C.; Gillespie, R.G.; Hoff, K.J.; Prost, S. Chromosome-Level Reference Genome of the European Wasp Spider Argiope Bruennichi: A Resource for Studies on Range Expansion and Evolutionary Adaptation. GigaScience 2021, 10, giaa148. [Google Scholar] [CrossRef] [PubMed]
- Wellcome Sanger Institute. 25 Genomes for 25 Years. Available online: https://www.sanger.ac.uk/collaboration/25-genomes-for-25-years/ (accessed on 16 December 2021).
- Sánchez-Herrero, J.F.; Frías-López, C.; Escuer, P.; Hinojosa-Alvarez, S.; Arnedo, M.A.; Sánchez-Gracia, A.; Rozas, J. The Draft Genome Sequence of the Spider Dysdera Silvatica (Araneae, Dysderidae): A Valuable Resource for Functional and Evolutionary Genomic Studies in Chelicerates. GigaScience 2019, 8, giz099. [Google Scholar] [CrossRef]
- i5K Consortium. The I5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. J. Hered. 2013, 104, 595–600. [Google Scholar] [CrossRef]
- Hendrickx, F.; De Corte, Z.; Sonet, G.; Van Belleghem, S.M.; Köstlbacher, S.; Vangestel, C. A Masculinizing Supergene Underlies an Exaggerated Male Reproductive Morph in a Spider. Nat. Ecol. Evol. 2022, 6, 195–206. [Google Scholar] [CrossRef]
- Schwager, E.E.; Sharma, P.P.; Clarke, T.; Leite, D.J.; Wierschin, T.; Pechmann, M.; Akiyama-Oda, Y.; Esposito, L.; Bechsgaard, J.; Bilde, T.; et al. The House Spider Genome Reveals an Ancient Whole-Genome Duplication during Arachnid Evolution. BMC Biol. 2017, 15, 62. [Google Scholar] [CrossRef]
- Yu, N.; Li, J.; Liu, M.; Huang, L.; Bao, H.; Yang, Z.; Zhang, Y.; Gao, H.; Wang, Z.; Yang, Y.; et al. Genome Sequencing and Neurotoxin Diversity of a Wandering Spider Pardosa Pseudoannulata (Pond Wolf Spider). BioRxiv. 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Aagaard, A.; Bechsgaard, J.; Bilde, T. DNA Methylation Patterns in the Social Spider, Stegodyphus Dumicola. Genes 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babb, P.L.; Lahens, N.F.; Correa-Garhwal, S.M.; Nicholson, D.N.; Kim, E.J.; Hogenesch, J.B.; Kuntner, M.; Higgins, L.; Hayashi, C.Y.; Agnarsson, I.; et al. The Nephila Clavipes Genome Highlights the Diversity of Spider Silk Genes and Their Complex Expression. Nat. Genet. 2017, 49, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Faircloth, B.C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 2016, 32, 786–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Li, L.; Myers, J.R.; Marth, G.T. ART: A next-Generation Sequencing Read Simulator. Bioinformatics 2012, 28, 593–594. [Google Scholar] [CrossRef] [Green Version]
- Lunter, G.; Goodson, M. Stampy: A Statistical Algorithm for Sensitive and Fast Mapping of Illumina Sequence Reads. Genome Res. 2011, 21, 936–939. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Hipp, R.D. SQLite Home Page. Available online: https://www.sqlite.org/index.html (accessed on 25 December 2020).
- Harris, R.S. Improved Pairwise Alignment of Genomic DNA; The Pennsylvania State University: State College, PA, USA, 2007. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Hahn, M.W.; Lanfear, R. New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Mol. Biol. Evol. 2020, 37, 2727–2733. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, W.C.; Coddington, J.A.; Crowley, L.M.; Dimitrov, D.; Goloboff, P.A.; Griswold, C.E.; Hormiga, G.; Prendini, L.; Ramírez, M.J.; Sierwald, P.; et al. The Spider Tree of Life: Phylogeny of Araneae Based on Target-Gene Analyses from an Extensive Taxon Sampling. Cladistics 2017, 33, 574–616. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4. Available online: https://github.com/rambaut/figtree/releases (accessed on 25 October 2021).
- Kallal, R.J.; Kulkarni, S.S.; Dimitrov, D.; Benavides, L.R.; Arnedo, M.A.; Giribet, G.; Hormiga, G. Converging on the Orb: Denser Taxon Sampling Elucidates Spider Phylogeny and New Analytical Methods Support Repeated Evolution of the Orb Web. Cladistics 2021, 37, 298–316. [Google Scholar] [CrossRef] [PubMed]
Target Taxon | Genomes Used to Identify UCEs | Genomes Used to Design Probes | Number of UCE Loci | Number of Probes | Publication Year | Reference |
---|---|---|---|---|---|---|
Arachnida | Trithyreus pentapaltis, Atypoides riversi, Phrynus marginemaculatus, Cryptocellus goodnighti, Mitopus morio, Bothriurus keyserlingi, Pseudouroctonus apacheanus, Hadogenes troglodytes, Vaejovis deboerae, Ixodes scapularis, Limulus polyphemus | Ixodes scapularis, Limulus polyphemus, Acanthoscurria geniculata, Centruroides exilicauda, Latrodectus hesperus, Mesobuthus martensii, Parasteatoda tepidariorum, Stegodyphus mimosarum, Amblyomma americanum | 1120 | 14,799 | 2017 | [9] |
Araneae | Parasteatoda tepidariorum, Acanthoscurria geniculata, Stegodyphus mimosarum | Parasteatoda tepidariorum, Acanthoscurria geniculata, Stegodyphus mimosarum | 2021 | 15,051 | 2020 | [11] |
Araneoidea | Argyrodes miniaceus, Latrodectus hesperus, Loxosceles reclusa, Trichonephila clavipes, Parasteatoda tepidariorum, Stegodyphus mimosarum | Argyrodes miniaceus, Latrodectus hesperus, Loxosceles reclusa, Trichonephila clavipes, Parasteatoda tepidariorum, Stegodyphus mimosarum | 1374 | 12,679 | 2021 | This article |
- | - | - | 3344 | 30,379 | 2021 | This article |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-Y.; Tsai, J.-M.; Wu, C.-Y.; Chiu, Y.-F.; Li, H.-Y.; Warrit, N.; Wan, Y.-C.; Lin, Y.-P.; Cheng, R.-C.; Su, Y.-C. In Silico Assessment of Probe-Capturing Strategies and Effectiveness in the Spider Sub-Lineage Araneoidea (Order: Araneae). Diversity 2022, 14, 184. https://doi.org/10.3390/d14030184
Li Y-Y, Tsai J-M, Wu C-Y, Chiu Y-F, Li H-Y, Warrit N, Wan Y-C, Lin Y-P, Cheng R-C, Su Y-C. In Silico Assessment of Probe-Capturing Strategies and Effectiveness in the Spider Sub-Lineage Araneoidea (Order: Araneae). Diversity. 2022; 14(3):184. https://doi.org/10.3390/d14030184
Chicago/Turabian StyleLi, Yi-Yen, Jer-Min Tsai, Cheng-Yu Wu, Yi-Fan Chiu, Han-Yun Li, Natapot Warrit, Yu-Cen Wan, Yen-Po Lin, Ren-Chung Cheng, and Yong-Chao Su. 2022. "In Silico Assessment of Probe-Capturing Strategies and Effectiveness in the Spider Sub-Lineage Araneoidea (Order: Araneae)" Diversity 14, no. 3: 184. https://doi.org/10.3390/d14030184
APA StyleLi, Y. -Y., Tsai, J. -M., Wu, C. -Y., Chiu, Y. -F., Li, H. -Y., Warrit, N., Wan, Y. -C., Lin, Y. -P., Cheng, R. -C., & Su, Y. -C. (2022). In Silico Assessment of Probe-Capturing Strategies and Effectiveness in the Spider Sub-Lineage Araneoidea (Order: Araneae). Diversity, 14(3), 184. https://doi.org/10.3390/d14030184