Simultaneous Study of the Growth and Grazing Mortality Rates of Microbial Food Web Components in a Mediterranean Coastal Lagoon
Abstract
:1. Introduction
2. Material and Methods
2.1. Dilution Experiments and Seawater Sampling
2.2. Chemical Sampling and Analysis
2.3. Bacteria, Cyanobacteria, and Eukaryotic Picophytoplankton and Nanophytoplankton Sampling and Analyses
2.4. Heterotrophic Flagellate and Ciliate Sampling and Analyses
2.5. Data Processing and Statistical Analysis
2.6. Calculation of g:µ Ratio
3. Results
3.1. Physical and Chemical Conditions for the Dilution Experiments
3.2. Abundances of the MFW Components
3.3. Growth and Grazing Mortality Rates of MFW Components
3.4. Cell Transfer through the MFW
4. Discussion
4.1. Abundances of the MFW Components
4.2. Growth and Grazing Mortality Rates of MFW Components
4.3. The Fate of the MFW Components: Accumulation or Transfer?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Sherr, B.F.; Sherr, E.B. Marine microbes: An overview. In Microbial Ecology of the Oceans; Kirchman, D., Ed.; Wiley-Liss: New York, NY, USA, 2000; pp. 13–46. [Google Scholar]
- Pomeroy, L.R.; Wiebe, W.J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 2001, 23, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Chen, B.; Laws, E.A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 2017, 62, 806–817. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 2002, 81, 293–308. [Google Scholar] [CrossRef]
- Calbet, A.; Landry, M.R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 2004, 49, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Rublee, P.; Gallegos, C. Use of fluorescently labelled algae (FLA) to estimate microzooplankton grazing. Mar. Ecol. Prog. Ser. 1989, 51, 221–227. [Google Scholar] [CrossRef]
- Landry, M.R.; Hassett, R.P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 1982, 67, 283–288. [Google Scholar] [CrossRef]
- Vrba, J.; Simek, K.; Nedoma, J.; Hartman, P. MUF-P-N-acetylglucosaminide hydrolysis by a high affinity enzyme, a putative marker of protozoan bacterivory. Appl. Environ. Microbiol. 1993, 59, 3091–3101. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, J.A.; McManus, G.B. Do Bacteria-Sized Marine Eukaryotes Consume Significant Bacterial Production? Science 1984, 224, 1257–1260. [Google Scholar] [CrossRef]
- Sherr, B.F.; Sherr, E.B.; Andrew, T.L.; Fallon, R.D.; Newell, S.Y. Trophic interactions between protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Mar. Ecol.-Prog. Ser. 1986, 32, 169–180. [Google Scholar] [CrossRef]
- Landry, M.R.; Kirshtein, J.; Constantinou, J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 1995, 120, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.-Y.; Gong, G.-C.; Sanders, R.; Chiang, K.-P.; Chao, C.-F. Heterotrophic bacterial and Synechococcus spp. Growth and mortality along the inshore-offshore in the East China Sea in summer. J. Oceanogr. 2012, 68, 151–162. [Google Scholar] [CrossRef]
- Staniewski, M.A.; Short, C.M.; Short, S.M. Contrasting Community versus Population-Based Estimates of Grazing and Virus-Induced Mortality of Phytoplankton. Microb. Ecol. 2012, 64, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Landry, M.R.; Huang, B.; Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 2012, 57, 519–526. [Google Scholar] [CrossRef]
- Scharek, R.; Latasa, M. Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep chlorophyll maximum layers in the NW Mediterranean Sea. Aquat. Microb. Ecol. 2007, 46, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Ferrera, I.; Gasol, J.M.; Marta, S.; Hojerova, E.; Koblizek, M. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters. Appl. Environ. Microbiol. 2011, 77, 7451–7458. [Google Scholar] [CrossRef] [Green Version]
- Šolić, M.; Šantić, D.; Šestanović, S.; Bojanić, N.; Ordulj, M.; Jozić, S.; Vrdoljak, A. The effect of temperature increase on microbial carbon fluxes in the Adriatic Sea: An experimental approach. FEMS Microbiol. Ecol. 2018, 94, fiy169. [Google Scholar] [CrossRef] [Green Version]
- Šolić, M.; Šantić, D.; Šestanović, S.; Bojanić, N.; Jozić, S.; Ordulj, M.; Tomaš, A.V.; Kušpilić, G. Changes in the trophic path-ways within the microbial food web in the global warming scenario: An experimental study in the Adriatic Sea. Microorganisms 2020, 8, 510. [Google Scholar] [CrossRef] [Green Version]
- Treguer, P.; Le Corre, P. Manuel d’Analyse des sels Nutritifs Dans l’Eau de mer: Utilisation de l’Autoanalyzer II Technicon, 2nd ed.; Laboratoire d’Océanographie Chimique, Université de Bretagne Occidentale: Brest, France, 1975; 110p. [Google Scholar]
- Pecqueur, D.; Vidussi, F.; Fouilland, E.; Le Floc’h, E.; Mas, S.; Roques, C.; Salles, C.; Tournoud, M.G.; Mostajir, B. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 2011, 673, 13–27. [Google Scholar] [CrossRef]
- Marie, D.; Partensky, F.; Jacquet, S.; Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green, I. Appl. Environ. Microbiol. 1997, 63, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, D.; Partensky, F.; Vaulot, D.; Brussaard, C. Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples. Curr. Protoc. Cytom. 1999, 10, 11.11.1–11.11.15. [Google Scholar] [CrossRef] [PubMed]
- Gasol, J.M.; Zweifel, U.L.; Peters, F.; Fuhrman, J.A.; Hagström, A. Significance of Size and Nucleic Acid Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria. Appl. Environ. Microbiol. 1999, 65, 4475–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochem, F.J.; Lavrentyev, P.J.; First, M.R. Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar. Biol. 2004, 145, 1213–1225. [Google Scholar] [CrossRef]
- Morán, X.A.G.; Bode, A.; Suárez, L.Á.; Nogueira, E. Assessing the relevance of nucleic acid content as an indicator of marine bacterial activity. Aquat. Microb. Ecol. 2007, 46, 141–152. [Google Scholar] [CrossRef]
- Sherr, E.B.; Caron, D.A.; Sherr, B.F. Staining of heterotrophic protists for visualization via epifluorescence microscopy. In Handbook of Methods in Aquatic Microbial Ecology; Kemp, P.F., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 213–229. [Google Scholar]
- Kofoid, C.A.; Campbell, A.S. The Ciliata: The Tintinnoinea; Bulletin of the Museum of Comparative Zoology at Harvard College: Boston, MA, USA, 1939; pp. 1–473. [Google Scholar]
- Grassé, P.P. Traité de Zoologie; Masson: Paris, France, 1952; Volume 1. [Google Scholar]
- Bick, H. (Ed.) Ciliated Protozoa; World Health Organization: Geneva, Switzerland, 1972. [Google Scholar]
- Kudo, R.R. Protozoology, 5th ed.; Charles, C. Thomas Publisher: Springfield, IL, USA, 1977. [Google Scholar]
- Corliss, J.O. The Ciliate Protozoa: Characterisation, Classification and Guide to the Literature, 2nd ed.; Pergamon: Oxford, UK, 1979. [Google Scholar]
- Maeda, M.; Carey, P.G. An Illustrated Guide to the Species of the Family Strombidiidae (Oligotrichida, Ciliophora), Free Swimming Protozoa Common in the Aquatic Environment; Bulletin of the Ocean Research Institute University of Tokyo: Tokyo, Japan, 1985. [Google Scholar]
- Carey, P.G. Marine Interstitial Ciliates; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Chrétiennot-Dinet, M.J.; Billard, C.; Sournia, A. Chlorarachniophycées, Chlorophycées, Chrysophycées, Cryptophycées, Euglénophycées, Eustigmatophycées, Prasinophycées, Prymnésiophycées, Rhodophycées et Tribophycées; Editions du Centre National de la Recherche Scientifique: Paris, France, 1990. [Google Scholar]
- Paulmier, G. Tintinnides (Ciliophora, Oligotrichida, Tintinnina) de l’Atlantique Boréal, de l’Océan Indien et de Quelques Mers Adjacentes: Méditerranée, Mer Caraibe, Mer Rouge. Inventaire et Distribution. Observations Basées sur les Loricas. 1997. Available online: https://archimer.ifremer.fr/doc/00424/53609/ (accessed on 25 January 2022).
- Sokal, R.R.; Rohlf, F.J. Biometry WH Freeman and Co San Francisco. Biometry, 2nd ed.; WH Freeman and Co.: San Francisco, CA, USA, 1981. [Google Scholar]
- Landry, M.R.; Calbet, A. Microzooplankton production in the oceans. ICES J. Mar. Sci. 2004, 61, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Gasol, J.M.; del Giorgio, P.A. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 2000, 64, 197–224. [Google Scholar] [CrossRef] [Green Version]
- LeBaron, P.; Servais, P.; Agogué, H.; Courties, C.; Joux, F. Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us to Discriminate between Active Cells and Inactive Cells in Aquatic Systems? Appl. Environ. Microbiol. 2001, 67, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Zubkov, M.V.; Fuchs, B.M.; Archer, S.D.; Kiene, R.P.; Amann, R.; Burkill, P.H. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. Microb. 2001, 3, 304–311. [Google Scholar] [CrossRef]
- Zubkov, M.V.; Fuchs, B.M.; Burkill, P.H.; Amann, R. Comparison of Cellular and Biomass Specific Activities of Dominant Bacterioplankton Groups in Stratified Waters of the Celtic Sea. Appl. Environ. Microbiol. 2001, 67, 5210–5218. [Google Scholar] [CrossRef] [Green Version]
- Courties, C.; Vaquer, A.; Troussellier, M.; Lautier, J.; Chrétiennot-Dinet, M.J.; Neveux, J.; Machado, C.; Claustre, H. Smallest eukaryotic organism. Nature 1994, 370, 255. [Google Scholar] [CrossRef]
- Chrétiennot-Dinet, M.-J.; Courties, C.; Vaquer, A.; Neveux, J.; Claustre, H.; Lautier, J.; Machado, M.C. A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 1995, 34, 285–292. [Google Scholar] [CrossRef]
- Fouilland, E.; Descolas-Gros, C.; Courties, C.; Collos, Y.; Vaquer, A.; Gasc, A. Productivity and Growth of a Natural Population of the Smallest Free-Living Eukaryote under Nitrogen Deficiency and Sufficiency. Microb. Ecol. 2004, 48, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Vaqué, D.; Casamayor, E.O.; Gasol, J.M. Dynamics of whole community bacterial production and grazing losses related to changes in the proportion of bacteria with different DNA- content. Aquat. Microb. Ecol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Alonso-Sáez, L.; Vázquez-Domínguez, E.; Cardelus, C.; Pinhassi, J.; Sala, M.M.; Lekunberri, I.; Balagué, V.; Vila-Costa, M.; Unrein, F.; Massana, R.; et al. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 2018, 11, 397–409. [Google Scholar] [CrossRef]
- Šolić, M.; Krstulović, N.; Šantić, D.; Šestanović, S.; Ordulj, M.; Bojanić, N.; Kušpilić, G. Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. Biol. Assoc. UK 2015, 95, 1565–1578. [Google Scholar] [CrossRef]
- Vidussi, F.; Mostajir, B.; Fouilland, E.; Le Floc’h, E.; Nouguier, J.; Roques, C.; Got, P.; Thibault-Botha, D.; Bouvier, T.; Troussellier, M. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol Oceanogr 2011, 56, 206–218. [Google Scholar] [CrossRef]
- Mostajir, B.; Roques, C.; Bouvier, C.; Bouvier, T.; Fouilland, É.; Got, P.; Le Floc’H, E.; Nouguier, J.; Mas, S.; Sempéré, R.; et al. Microbial food web structural and functional responses to oyster and fish as top predators. Mar. Ecol. Prog. Ser. 2015, 535, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Courboulès, J.; Vidussi, F.; Soulié, T.; Mas, S.; Pecqueur, D.; Mostajir, B. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 2021, 55, 647–666. [Google Scholar] [CrossRef]
- Trombetta, T.; Vidussi, F.; Mas, S.; Parin, D.; Simier, M.; Mostajir, B. Water temperature drives phytoplankton blooms in coastal waters. PLoS ONE 2019, 14, e0214933. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, T.; Vidussi, F.; Roques, C.; Scotti, M.; Mostajir, B. Marine Microbial Food Web Networks During Phytoplankton Bloom and Non-bloom Periods: Warming Favors Smaller Organism Interactions and Intensifies Trophic Cascade. Front. Microbiol. 2020, 11, 2657. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, T.; Vidussi, F.; Roques, C.; Mas, S.; Scotti, M.; Mostajir, B. Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon. Sci. Rep. 2021, 11, 17675. [Google Scholar] [CrossRef]
- Derolez, V.; Soudant, D.; Malet, N.; Chiantella, C.; Richard, M.; Abadie, E.; Aliaume, C.; Bec, B. Two decades of oligotrophica-tion: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 2020, 241, 106810. [Google Scholar] [CrossRef]
- Bec, B.; Husseini-Ratrema, J.; Collos, Y.; Souchu, P.; Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 2005, 27, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Guillou, L.; Eikrem, W.; Chrétiennot-Dinet, M.-J.; Le Gall, F.; Massana, R.; Romari, K.; Pedrós-Alió, C.; Vaulot, D. Diversity of Picoplanktonic Prasinophytes Assessed by Direct Nuclear SSU rDNA Sequencing of Environmental Samples and Novel Isolates Retrieved from Oceanic and Coastal Marine Ecosystems. Protist 2004, 155, 193–214. [Google Scholar] [CrossRef] [Green Version]
- Morán, X.A.G.; Ducklow, H.W.; Erickson, M. Single-cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts). Limnol. Oceanogr. 2010, 56, 37–48. [Google Scholar] [CrossRef]
- Šantić, D.; Krstulović, N.; Šolić, M.; Ordulj, M.; Kušpilić, G. Dynamics of prokaryotic picoplankton community in the central and southern Adriatic Sea (Croatia). Helgol. Mar. Res. 2012, 67, 471–481. [Google Scholar] [CrossRef]
- Servais, P.; Casamayor, E.O.; Courties, C.; Catala, P.; Parthuisot, N.; LeBaron, P. Activity and diversity of bacterial cells with high and low nucleic acid content. Aquat. Microb. Ecol. 2003, 33, 41–51. [Google Scholar] [CrossRef]
- Calbet, A.; Saiz, E. How much is enough for nutrients in microzooplankton dilution grazing experiments? J. Plankton Res. 2017, 40, 109–117. [Google Scholar] [CrossRef]
- Fuhrman, J.A. Marine viruses and their biogeochemical and ecological effects. Nature 1999, 399, 541–548. [Google Scholar] [CrossRef]
- Baudoux, A.C.; Veldhuis, M.J.W.; Noordeloos, A.A.M.; Van Noort, G.; Brussaard, C.P.D. Estimates of virus vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat. Microb. Ecol. 2008, 52, 69–82. [Google Scholar] [CrossRef]
- Danovaro, R.; Corinaldesi, C.; Dell’Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A. Marine viruses and global climate change. FEMS Microbiol. Rev. 2011, 35, 993–1034. [Google Scholar] [CrossRef] [PubMed]
- Rassoulzadegan, F. Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg., fed on naturally occurring particulate matter. Ann. l’Institut Oceanogr. Paris Nouv. Ser. 1982, 58, 177–184. [Google Scholar]
- Christaki, U.; Dolan, J.; Pelegri, S.; Rassoulzadegan, F. Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 1998, 43, 458–464. [Google Scholar] [CrossRef]
- Hansen, P.J.; Moldrup, M.; Tarangkoon, W.; Garcia-Cuetos, L.; Moestrup, Ø. Direct evidence for symbiont seques-tration in the marine red tide ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 2012, 66, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Seong, K.A.; Myung, G.; Jeong, H.J.; Yih, W.; Kim, H.S.; Jo, H.J.; Park, J.Y.; Du Yoo, Y. Ingestion rate and grazing impact by the mixotrophic ciliate Mesodinium rubrum on natural populations of marine heterotrophic bacteria in the coastal waters of Korea. ALGAE 2017, 32, 47–55. [Google Scholar] [CrossRef]
- Unrein, F.; Massana, R.; Alonso-Sáez, L.; Gasol, J.M. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol. Oceanogr. 2007, 52, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Zubkov, M.V.; Tarran, G.A. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 2008, 455, 224–226. [Google Scholar] [CrossRef]
- Hartmann, M.; Grob, C.; Tarran, G.A.; Martin, A.P.; Burkill, P.H.; Scanlan, D.; Zubkov, M.V. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc. Natl. Acad. Sci. USA 2012, 109, 5756–5760. [Google Scholar] [CrossRef] [Green Version]
- Stoecker, D.K. Mixotrophy among Dinoflagellates. J. Eukaryot. Microbiol. 1999, 46, 397–401. [Google Scholar] [CrossRef]
- Jeong, H.J.; Du Yoo, Y.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.M.; Caron, D.A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 2007, 52, 886–895. [Google Scholar] [CrossRef]
- Bissinger, J.E.; Montagnes, D.J.S.; Sharples, J.; Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 2008, 53, 487–493. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Huang, L.; Li, G. Does microzooplankton grazing contribute to the picophytoplankton dominance in subtropical and tropical oligotrophic waters? Acta Ecol. Sin. 2015, 35, 29–38. [Google Scholar] [CrossRef]
- Menden-Deuer, S.; Lawrence, C.; Franzè, G. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom. PeerJ 2018, 6, e5264. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Harvey, E.L. Seasonal Variability and Drivers of Microzooplankton Grazing and Phytoplankton Growth in a Subtropical Estuary. Front. Mar. Sci. 2019, 6, 174. [Google Scholar] [CrossRef]
- Jürgens, K.; Gasol, J.M.; Vaqué, D. Bacteria–flagellate coupling in microcosm experiments in the Central Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 2000, 245, 127–147. [Google Scholar] [CrossRef]
- Agusti, S.; Satta, M.P.; Mura, M.P.; Benavent, E. Dissolved esterase activity as a tracer of phytoplankton lysis: Evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol. Oceanogr. 1998, 43, 1836–1849. [Google Scholar] [CrossRef]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- White, P.A.; Kalff, J.; Rasmussen, J.B.; Gasol, J.M. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 1991, 21, 99–118. [Google Scholar] [CrossRef]
- Huete-Stauffer, T.M.; Arandia-Gorostidi, N.; Díaz-Pérez, L.; Morán, X.A.G. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions. FEMS Microbiol. Ecol. 2015, 91, fiv111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physical and Chemical Parameters | October 2008 | May 2009 | June 2009 | July 2009 |
---|---|---|---|---|
Temperature (°C) | 16.3 | 20.4 | 25.0 | 23.3 |
Salinity | 36.6 | N.A | 35.6 | 37.1 |
Nitrates (µmol L−1) | 0.24 ± 0.05 | 0.22 ± 0.04 | 0.26 ± 0.04 | 0.60 ± 0.01 |
Phosphorus (µmol L−1) | 0.09 ± 0.02 | 0.12 ± 0.04 | 0.07 ± 0.01 | 0.02 ± 0.00 |
Silicate (µmol L−1) | 10.26 ± 0.21 | 1.24 ± 0.25 | 7.51 ± 0.13 | 17.83 ± 0.07 |
N:P ratio | 2.66 | 1.83 | 3.71 | 30.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecqueur, D.; Courboulès, J.; Roques, C.; Mas, S.; Pete, R.; Vidussi, F.; Mostajir, B. Simultaneous Study of the Growth and Grazing Mortality Rates of Microbial Food Web Components in a Mediterranean Coastal Lagoon. Diversity 2022, 14, 186. https://doi.org/10.3390/d14030186
Pecqueur D, Courboulès J, Roques C, Mas S, Pete R, Vidussi F, Mostajir B. Simultaneous Study of the Growth and Grazing Mortality Rates of Microbial Food Web Components in a Mediterranean Coastal Lagoon. Diversity. 2022; 14(3):186. https://doi.org/10.3390/d14030186
Chicago/Turabian StylePecqueur, David, Justine Courboulès, Cécile Roques, Sébastien Mas, Romain Pete, Francesca Vidussi, and Behzad Mostajir. 2022. "Simultaneous Study of the Growth and Grazing Mortality Rates of Microbial Food Web Components in a Mediterranean Coastal Lagoon" Diversity 14, no. 3: 186. https://doi.org/10.3390/d14030186
APA StylePecqueur, D., Courboulès, J., Roques, C., Mas, S., Pete, R., Vidussi, F., & Mostajir, B. (2022). Simultaneous Study of the Growth and Grazing Mortality Rates of Microbial Food Web Components in a Mediterranean Coastal Lagoon. Diversity, 14(3), 186. https://doi.org/10.3390/d14030186