Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Isolation and Identification of Endophytic Fungi
2.3. DNA Extraction, PCR Amplification and DNA Sequencing
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Feng, X.; Wang, M.; Wang, Y.; Kumar, A.M.; Xu, P. Implications of endophytic microbiota in Camellia sinensis: A review on current understanding and future insights. Bioengineered 2020, 11, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.N.; Agostini, J.P.; Zhang, L.; Timmer, L.W. Factors affecting pycnidium production of Diaporthe citri on detached citrus twigs. Plant Dis. 2004, 88, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. FAO Database. Food and Agriculture Organization; United Nations. 2015. Available online: http://faostat3.fao.org/download/Q/QC/E (accessed on 16 November 2021).
- Meegahakumbura, M.K.; Wambulwa, M.C.; Li, M.M.; Thapa, K.K.; Sun, Y.S.; Möller, M.; Xu, J.-C.; Yang, J.-B.; Liu, J.; Liu, B.-Y.; et al. Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data. Front. Plant Sci. 2018, 8, 2270. [Google Scholar] [CrossRef] [Green Version]
- Ming, T.L.; Bartholomew, B. Theaceae. Flora China 2007, 12, 366–478. [Google Scholar]
- Stuart, C.C. A basis for tea selection. Bull. Jard. Bot. Buitenzorg 1919, 1, 193–320. [Google Scholar]
- Wight, W. Nomenclature and classification of the tea plant. Nature 1959, 183, 1726–1728. [Google Scholar] [CrossRef]
- Petrini, O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Jia, M.; Chen, L.; Xin, H.L.; Zheng, C.J.; Rahman, K.; Han, T.; Qin, L.P. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front. Microbiol. 2016, 7, 906. [Google Scholar] [CrossRef] [Green Version]
- Bayman, P.; Lebron, L.L.; Tremblay, R.L.; Lodge, D.J. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 1997, 135, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Shreelalitha, S.J.; Sridhar, K.R. Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the Southwest coast of India. J. For. Res. 2015, 26, 1003–1011. [Google Scholar] [CrossRef]
- Faeth, S.H.; Fagan, W.F. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integr. Comp. Biol. 2002, 42, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheplick, G.P.; Perera, A.; Koulouris, K. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct. Ecol. 2000, 14, 657–667. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, A.R.A. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Debbab, A.; Aly, A.H.; Proksch, P. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers. 2011, 49, 1. [Google Scholar] [CrossRef]
- Douanla-Meli, C.; Langer, E.; Mouafo, F.T. Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecol. 2013, 6, 212–222. [Google Scholar] [CrossRef]
- Rabha, A.J.; Naglot, A.; Sharma, G.D.; Gogoi, H.K.; Veer, V. In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J. Microbiol. 2014, 54, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Nath, R.; Sharma, G.D.; Barooah, M. Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl. Ecol. Environ. Res. 2015, 13, 877–891. [Google Scholar]
- Hartley, S.E.; Eschen, R.; Horwood, J.M.; Gange, A.C.; Hill, E.M. Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. New Phytol. 2015, 205, 816–827. [Google Scholar] [CrossRef] [Green Version]
- Amin, N. Endophytic fungi to control of cocoa pod borer (Conopomorpha cramerella) on Cocoa plantation. Res. J. Pharm. 2016, 7, 1496–1501. [Google Scholar]
- Potshangbam, M.; Devi, S.I.; Sahoo, D.; Strobel, G.A. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front. Microbiol. 2017, 8, 325. [Google Scholar] [CrossRef]
- Bills, G.F. Isolation and analysis of endophytic fungal communities from woody plants. In Endophytic Fungi in Grasses and Woody Plants: Systematics, Ecology, and Evolution; Redlin, S.C., Carris, L.M., Eds.; APS Press: St. Paul, MN, USA, 1996; pp. 31–65. [Google Scholar]
- Lacap, D.C.; Hyde, K.D.; Liew, E.C.Y. An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers. 2003, 12, 53–66. [Google Scholar]
- Guo, L.D.; Hyde, K.D.; Liew, E.C.Y. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 2000, 147, 617–630. [Google Scholar] [CrossRef]
- Guo, L.D.; Huang, G.R.; Yu, W.A.N.G.; Zheng, W.H. Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol. Res. 2003, 107, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Hyde, K.D.; Pawłowska, J.; Ryberg, M.; Tedersoo, L.; Aas, A.B.; Alias, S.A.; Alves, A.; Anderson, C.L.; Antonelli, A.; et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers. 2014, 67, 11–19. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Promputtha, I.; Jeewon, R.; Lumyong, S.; McKenzie, E.H.; Hyde, K.D. Ribosomal DNA fingerprinting in the identification of non-sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers. 2005, 20, 167–186. [Google Scholar]
- Doilom, M.; Manawasinghe, I.S.; Jeewon, R.; Jayawardena, R.S.; Tibpromma, S.; Hongsanan, S.; Meepol, W.; Lumyong, S.; Jones, E.B.G.; Hyde, K.D. Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere 2017, 8, 1869–1892. [Google Scholar] [CrossRef]
- Ko Ko, T.W.; Stephenson, S.L.; Bahkali, A.H.; Hyde, K.D. From morphology to molecular biology: Can we use sequence data to identify fungal endophytes? Fungal Divers. 2011, 50, 113–120. [Google Scholar] [CrossRef]
- Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.; Promputtha, I.; Doilom, M.; Yang, J.B.; Tang, A.M.; Karunarathna, S.C. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018, 33, 25–67. [Google Scholar] [CrossRef]
- Fang, W.; Yang, L.; Zhu, X.; Zeng, L.; Li, X. Seasonal and habitat dependent variations in culturable endophytes of Camellia sinensis. J. Plant Pathol. Microbiol. 2013, 4, 169. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Verkley, G.J.; Sun, G.; Groenewald, J.Z.; Crous, P.W. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016, 120, 1291–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.Q.; Xu, Y.P.; Xie, L.H.; Wang, G.H.; Yang, M.H. Isolation of endophytic fungi in tea plant (Camellia sinensis), and their distribution patterns in different tissues. J. Laiyang Agric. Coll. 2006, 23, 250–254. (In Chinese) [Google Scholar]
- Lu, D.S.; Wang, J.P.; Wu, X.Q.; Ye, J.R. The species and distribution of endophytic fungi in tea trees. J. Henan Agric. Sci. 2007, 10, 54–56. [Google Scholar]
- Osono, T. Endophytic and epiphytic phyllosphere fungi of Camellia japonica: Seasonal and leaf age-dependent variations. Mycologia 2008, 100, 387–391. [Google Scholar] [CrossRef]
- You, J. Dynamic distributes of endophytic fungi from Camellia sinensis. Guihaia 2008, 28, 82–85. (In Chinese) [Google Scholar]
- Chauhan, N.M.; Gutama, A.D.; Aysa, A. Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiol. 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wu, X. Fungal succession on tea leaves in the southern area of Henan province. J. Nanjing Univ. Nat. Sci. 2006, 49, 41–44. [Google Scholar]
- Wu, Z.; Su, Q.; Cui, Y.; He, H.; Wang, J.; Zhang, Y.; Zhao, Y.; Abul, H.; Yang, Y.; Long, Y. Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao). BMC Microbiol. 2020, 20, 270. [Google Scholar] [CrossRef]
- Duan, X.; Tao, Y.; Duan, C.C. A fine mesh climate division and the selection of representative climate stations in Yunnan Province. J. Atmos. Sci. 2011, 34, 336–342. (In Chinese) [Google Scholar]
- Tao, M.; Feng, F.; Wancheng, Z.; Linhan, Y. Variation of sunshine duration in the low latitude plateau in recent 50 years. J. Arid Meteorol. 2015, 33, 790. (In Chinese) [Google Scholar]
- Li, S.; Lu, J.; Pope, E.; Golding, N.; Zhou, T.; Li, F.; Duan, W. Influence of multi-timescale precipitation indices on primary tea production in Baoshan, Yunnan, China. Environ. Commun. 2022, 4, 025009. [Google Scholar] [CrossRef]
- Jianchu, X.; Fox, J.; Vogler, J.B.; Yongshou, Z.P.F.; Lixin, Y.; Jie, Q.; Leisz, S. Land-use and land-cover change and farmer vulnerability in Xishuangbanna prefecture in southwestern China. Environ. Manag. 2005, 36, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Zou, X.; Warren, M.; Zhu, H. Tropical forests of Xishuangbanna, China. Biotropica Biol. Conserv. 2006, 38, 306–309. [Google Scholar]
- Dauner, L.A.; Karunarathna, S.C.; Tibpromma, S.; Xu, J.; Mortimer, P.E. Bioluminescent fungus Roridomyces viridiluminus sp. nov. and the first Chinese record of the genus Roridomyces, from Southwestern China. Phytotaxa 2021, 487, 233–250. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, L.; Chen, Z.; Fu, Y.; Sun, X.; Wang, B.; Xia, T. Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep. 2020, 10, 19868. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal genes for phylogenetics In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Tibpromma, S.; Hyde, K.D.; McKenzie, E.H.; Bhat, D.J.; Phillips, A.J.; Wanasinghe, D.N.; Samarakoon, M.C.; Jayawardena, R.; Dissanayake, A.J.; Tennakoon, D.S.; et al. Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Divers. 2018, 93, 1–160. [Google Scholar] [CrossRef]
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current status and future directions. Stud. Mycol. 2007, 59, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Jayawardena, R.S.; Hyde, K.D.; Damm, U.; Cai, L.; Liu, M.; Li, X.H.; Zhang, W.; Zhao, W.S.; Yan, J.Y. Notes on currently accepted species of Colletotrichum. Mycosphere 2016, 7, 1192–1260. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Bhunjun, C.S.; Hyde, K.D.; Gentekaki, E.; Itthayakorn, P. Colletotrichum: Lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere 2021, 12, 519–669. [Google Scholar] [CrossRef]
- Ma, X.; Nontachaiyapoom, S.; Jayawardena, R.S.; Hyde, K.D.; Gentekaki, E.; Zhou, S.; Qian, Y.; Wen, T.; Kang, J. Endophytic Colletotrichum species from Dendrobium spp. in China and northern Thailand. MycoKeys 2018, 43, 23. [Google Scholar] [CrossRef] [Green Version]
- Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Johnston, P.R.; Weir, B.S.; Tan, Y.P.; Shivas, R.G.; Crous, P.W. The Colletotrichum boninense species complex. Stud. Mycol. 2007, 59, 75–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [Green Version]
- Marin-Felix, Y.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Marincowitz, S.; Barnes, I.; Bensch, K.; Braun, U.; Camporesi, E.; Damm, U.; et al. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 2017, 86, 99–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Photita, W.; Lumyong, S.; Lumyong, P.; Hyde, K.D. Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycol. Res. 2001, 105, 1508–1513. [Google Scholar] [CrossRef]
- Liu, F.; Weir, B.S.; Damm, U.; Crous, P.W.; Wang, Y.; Liu, B.; Wang, M.; Zhang, M.; Cai, L. Unravelling Colletotrichum species associated with Camellia: Employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Pers. Mol. Phylogeny Evol. Fungi 2015, 35, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Tibpromma, S.; Dong, Y.; Ranjitkar, S.; Schaefer, D.A.; Karunarathna, S.C.; Hyde, K.D.; Jayawardena, R.S.; Manawasinghe, I.S.; Bebber, D.P.; Promputtha, I.; et al. Climate-fungal pathogen modeling predicts loss of up to one-third of tea growing areas. Front. Cell. Infect. Microbiol. 2021, 11, 610567. [Google Scholar] [CrossRef]
- Han, S.; Jiang, Y.; Yi, J.; Li, S.; Wang, Y.L.; Li, T.; Li, J.; Wu, N.; Mao, X.; Qiao, T.; et al. First report of Colletotrichum fioriniae infection on Zanthoxylum armatum in China. Plant Dis. 2020, 104, 2292. [Google Scholar] [CrossRef]
- Silva-Valderrama, I.; Toapanta, D.; Miccono, M.D.L.A.; Lolas, M.; Díaz, G.A.; Cantu, D.; Castro, A. Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Front. Microbiol. 2021, 11, 3311. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, F.M.; Krimi, Z.; Maciá-Vicente, J.G.; Errahmani, M.B.; Lopez-Llorca, L.V. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Rev. Iberoam. Micol. 2017, 34, 116–120. [Google Scholar] [CrossRef]
Original Code | Location | Collection Date | GPS | Tea Plantation Type and Location Details (Yunnan, China) | Basic Climate Information |
---|---|---|---|---|---|
CN | Baoshan | 26 August 2019 | 24°29′09.2″ N 99°20′44.2″ E | Terraced tea, Wandianxiang, Changning County, Baoshan | Baoshan is located with mountainous and semi-mountainous areas with characterized by a climate that changes with altitude, experiencing a monsoon climate in the low-latitude plateau and six climate types between 535 m and 3780 m above mean sea-level [42,43,44]. |
LYA | 25 August 2019 | 25°10′25.2″ N 99°06′51.5″ E | Terraced tea, Banqiaozhen, Longyang District, Baoshan | ||
LYB | 25 August 2019 | 25°10′25.2″ N 99°06′51.5″ E | Terraced tea, Banqiaozhen, Longyang District, Baoshan | ||
BS | 24 August 2019 | 25°08′00.2″ N 99°08′07.3″ E | Terraced tea, Hanzhuangzhen, Longyang District, Baoshan | ||
HT | 23 August 2019 | 25°09′59.3″ N 99°11′00.5″ E | Shade tea with pine trees, Banqiaozhen, Longyang District, Baoshan | ||
ML | Xishuangbanna | 4 August 2020 | 2192120101.27 | Shade tea with rubber trees, Xishuangbanna botanical garden, Xishuangbanna | Xishuangbanna is located with mountainous and historically highly forested area with elevations ranging between 477 and 2429 m, annual mean temperatures ranging between 15.1 and 21.7 °C, and a monsoonal climate [45,46]. |
LJ | Lijiang | 1 July 2020 | 26°51′00.5″ N 99°50′16.7″ E | Wild tea, Shitouxiang, Yulong Naxi Autonomous County, Lijiang | Yulong Naxi Autonomous County of Lijiang City, 2370 m above sea level [47]. |
SG | 30 June 2020 | 26°50′58.1″ N 99°50′34.2″ E | Wild tea, Shitouxiang, Yulong Naxi Autonomous County, Lijiang | ||
AMA | Honghe | 1 September 2020 | 23°14′44.6″ N 102°11′46.6″ E | Mix planting, Jiachexiang, Honghe County, Honghe Hani and Yi Autonomous Prefecture | Hani-Yi Autonomous Prefecture of Honghe belonging to the plateau subtropical monsoon climate region. The average annual rainfall is 1491 mm. The average annual sunshine is 1065–2300 h. [48]. |
AMB | 1 September 2020 | 23°14′39.1″ N 102°11′20.4″ E | Shade tea with rubber trees, Jiachexiang, Honghe County, Honghe Hani and Yi Autonomous Prefecture | ||
AMC | 1 September 2020 | 23°14′40.8″ N 102°11′26.3″ E | Shade tea with rubber trees, Jiachexiang, Honghe County, Honghe Hani and Yi Autonomous Prefecture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibpromma, S.; Karunarathna, S.C.; Bhat, J.D.; Suwannarach, N.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Xu, J.; Mortimer, P.E. Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China. Diversity 2022, 14, 287. https://doi.org/10.3390/d14040287
Tibpromma S, Karunarathna SC, Bhat JD, Suwannarach N, Stephenson SL, Elgorban AM, Al-Rejaie S, Xu J, Mortimer PE. Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China. Diversity. 2022; 14(4):287. https://doi.org/10.3390/d14040287
Chicago/Turabian StyleTibpromma, Saowaluck, Samantha C. Karunarathna, Jayarama D. Bhat, Nakarin Suwannarach, Steven L. Stephenson, Abdallah M. Elgorban, Salim Al-Rejaie, Jianchu Xu, and Peter E. Mortimer. 2022. "Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China" Diversity 14, no. 4: 287. https://doi.org/10.3390/d14040287
APA StyleTibpromma, S., Karunarathna, S. C., Bhat, J. D., Suwannarach, N., Stephenson, S. L., Elgorban, A. M., Al-Rejaie, S., Xu, J., & Mortimer, P. E. (2022). Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China. Diversity, 14(4), 287. https://doi.org/10.3390/d14040287