Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a Freshwater Pond in China Based on a Polyphasic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Isolation, and Culturing of Strains
2.2. Morphological Characterization
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Phylogenetic Analysis
2.5. Secondary Structure Analysis of 16S–23S
3. Results
3.1. Morphological Description
3.2. Molecular and Phylogenetic Analysis
3.3. The 16S–23S ITS Region
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitton, B.A. The Ecology of Cyanobacteria II: Their Diversity in Time and Space; Springer: Dordrecht, The Netherlands, 2012; 669p. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota 2. Tiel: Oscillatoriales. In Süsswasserflora von Mitteleuropa 19/1; Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D., Eds.; Gustav Fischer: Ulm, Germany, 2005; pp. 1–548. [Google Scholar]
- Komárek, J. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 2010, 1, 245–259. [Google Scholar] [CrossRef]
- Komárek, J.; Kaštovský, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphyletic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Casamatta, D.A.; Johansen, J.R.; Vis, M.L.; Broadwater, S.T. Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J. Phycol. 2005, 41, 421–438. [Google Scholar] [CrossRef]
- Řeháková, K.; Johansen, J.R.; Casamatta, D.A.; Xuesong, L.; Vincent, J. Morphological and molecular characterization of selected desert soil cyanobacteria: Three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 2007, 46, 481–502. [Google Scholar] [CrossRef]
- Perkerson, R.B.; Johansen, J.R.; Kovacik, L.; Brand, J.; Kastovsky, J.; Casamatta, D.A. A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J. Phycol. 2011, 47, 1397–1412. [Google Scholar] [CrossRef]
- Engene, N.; Rottacker, E.C.; Kastovsky, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komarek, J.; Gerwick, W.H. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Santos, K.; Pietrasiak, N.; Bohunicka, M.; Miscoe, L.; Kovacik, L.; Martin, M.P.; Johansen, J.R. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. Eur. J. Phycol. 2014, 49, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Mareš, J.; Johansen, J.R.; Hauer, T.; Zima, J., Jr.; Ventura, S.; Cuzman, O.; Tiribilli, B.; Kastovsky, J. Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. J. Phycol. 2019, 55, 578–610. [Google Scholar] [CrossRef] [PubMed]
- Dadheech, P.K.; Mahmoud, H.; Kotut, K.; Krienitz, L. Desertifilum fontinale sp. nov. (Oscillatoriales, Cyanobacteria) from a warm spring in East Africa, based on conventional and molecular studies. Fottea 2014, 14, 129–140. [Google Scholar] [CrossRef]
- Řekáhová, K.; Johansen, J.R.; Bowen, M.B.; Martin, M.P.; Sheil, C.A. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis. Fottea 2014, 14, 161–178. [Google Scholar]
- Dvořák, P.; Casamatta, D.A.; Poulíčková, A.; Hašler, P.; Ondřej, V.; Sanges, R. Synechococcus: 3 billion years of global dominance. Mol. Ecol. 2014, 23, 5538–5551. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Hindák, F.; Hašler, P.; Hindáková, A.; Poulíčková, A. Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales). Phytotaxa 2014, 170, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Anagnostidis, K.; Komárek, J. Modern approach to the classification system of the Cyanophytes 3: Oscillatoriales. Algol. Stud. 1988, 50, 327–472. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World–Wide Electronic Publication, National University of Ireland, Galway. 2022. Available online: http://www.algaebase.org (accessed on 24 March 2022).
- Johansen, J.R.; Olsen, C.E.; Lowe, R.L.; Fučíková, K.; Casamatta, D.A. Leptolyngbya species from selected seep walls in the Great Smoky Mountains National Park. Algol. Stud. 2008, 126, 21–36. [Google Scholar] [CrossRef]
- Taton, A.; Brambilla, E.; De Wit, R.; Wilmotte, A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol. 2003, 69, 5157–5169. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.R.; Kovacik, L.; Casamatta, D.A.; Fuříková, K.; Kaštovský, J. Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwig. 2011, 92, 283–302. [Google Scholar] [CrossRef]
- Zammit, G.; Billi, D.; Alberto, P. The subaerophytic cyanobacterium Oculatella subteranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: A cytomorphological and molecular description. Eur. J. Phycol. 2012, 47, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Sciuto, K.; Moro, I. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Mol. Phylogenet. Evol. 2016, 105, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Abed, R.M.; Garcia-Pichel, F.; Hernandez-Marine, M. Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch. Microbiol. 2002, 177, 361–370. [Google Scholar] [CrossRef]
- Turicchia, S.; Ventura, S.; Komárková, J.; Komárek, J. Taxonomic evaluation of the cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwig. 2009, 89, 165–200. [Google Scholar] [CrossRef]
- Taton, A.; Wilmotte, A.; Smarda, J.; Elster, J.; Komárek, J. Plectolyngbya hodgsonii: A novel filamentous cyanobacterium from Antarctic lakes. Polar Biol. 2011, 34, 181–191. [Google Scholar] [CrossRef]
- Dadheech, P.K.; Mahmoud, H.; Kotut, K.; Krienitz, L. Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. Hydrobiologia 2012, 691, 269–283. [Google Scholar] [CrossRef]
- Vaz, M.G.M.V.; Bonaldo-Genuário, D.; Dini-Andreote, A.P.; Silva-Malone, C.F.; Sant’-Anna, C.L.; Barbiero, L.; Fátima-Fiore, M. Pantanalinema gen. nov. and Alkalinema gen. nov.: Two novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int. J. Syst. Evol. Microbiol. 2015, 65, 298–308. [Google Scholar] [CrossRef]
- Song, G.; Jiang, Y.; Li, R. Scytolyngbya timoleontis, gen. et sp. nov. (Leptolyngbyaceae, Cyanobacteria): A novel false branching Cyanobacteria from China. Phytotaxa 2015, 224, 72–84. [Google Scholar] [CrossRef]
- Miscoe, L.H.; Johansen, J.R.; Vaccarino, M.A.; Pietrasiak, N.; Sherwood, A.R. Novel cyanobacteria from caves on Kauai, Hawaii. Bibl. Phycol. 2016, 120, 75–152. [Google Scholar]
- Sciuto, K.; Moschin, E.; Moro, I. Cryptic cyanobacterial diversity in the Giant Cave (Trieste, Italy): The new genus Timaviella (Leptolyngbyaceae). Cryptogam. Algol. 2017, 38, 1–39. [Google Scholar] [CrossRef]
- Radzi, R.; Muangmai, N.; Broady, P.; Wan, M.; Merican, F. Nodosilinea signiensis sp. nov. (leptolyngbyaceae, synechococcales), a new terrestrial cyanobacterium isolated from mats collected on signy island, south orkney islands, antarctica. PLoS ONE 2019, 14, e0224395. [Google Scholar]
- Vázquez-Martinez, J.; Gutierrez-Villagomez, J.M.; Fonseca-Garcia, C.; Ramirez-Chavez, E.; Mondragón-Sánchez, M.L.; Partida-Martinez, L.; Molina-Torres, J. Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa 2018, 334, 167–182. [Google Scholar]
- Heidari, F.; Hauer, T.; Zima, J.; Riahi, H. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 2018, 18, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Davydov, D.; Shalygin, S.; Vilnet, A. New cyanobacterium Nodosilinea svalbardensis sp. nov. (prochlorotrichaceae, synechococcales) isolated from alluvium in Mimer river valley of the Svalbard archipelago. Phytotaxa 2020, 442, 061–079. [Google Scholar] [CrossRef]
- Strunecky, O.; Lenka, R.; Alexandra, B.; Pavlovna, I.A.; Alexandra, S.; Joel, C.; Davis, k. Diversity of cyanobacteria at the alaska north slope with description of two new genera: Gibliniella and Shackletoniella. FEMS. Microbiol. Ecol. 2020, 96, fz189. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.M.; Ichimura, T. Fresh-and salt-water forms of Spirulina platensis in axenic cultures. Bull. Jpn. Soc. Phycol. 1977, 25, 371–377. [Google Scholar]
- Geng, R.; Li, W.; Chao, A.; Guo, X.; Li, H.; Yu, G.; Li, R. Establishment of a new filamentous cyanobacterial genus, microcoleusiopsis gen. nov. (microcoleaceae, cyanobacteria), from benthic mats in open channel, jiangxi province, China. Diversity 2021, 13, 548. [Google Scholar] [CrossRef]
- Clarke, J.D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009, pdb.prot5177. [Google Scholar] [CrossRef]
- Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7853. [Google Scholar] [CrossRef] [Green Version]
- Gkelis, S.; Rajaniemi, P.; Vardaka, E.; Moustaka-Gouni, M.; Lanaras, T.; Sivonen, K. Limnothrix redekei (Van Goor) Meff ert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb. Ecol. 2005, 49, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Schwartz, T.; Pickett, B.; He, S.; Klem, E.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; O’Leary, M.A. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol. Bioinform. 2015, 11, 43–48. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4 2006–2018. Tree Figure Drawing Tool. Online Publication. Institute of Evolutionary Biology, University of Edinburgh. 2018. Available online: http://tree.bio.ed.ac.uk/software/figtree/programs/figtree/README.txt (accessed on 3 May 2022).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Mathews Lab. RNAstructure, Version 6.4. Available online: http://rna.urmc.rochester.edu/RNAstructure.html. (accessed on 8 December 2021).
- Mai, T.; Johansen, J.R.; Nicole, P.; Markéta, B.; Martin, M.P. Revision of the Synechococcales (cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 2018, 365, 001–059. [Google Scholar] [CrossRef] [Green Version]
- Konstantinou, D.; Voultsiadou, E.; Panteris, E.; Zervou, S.; Hiskia, A.; Gkelis, S. Leptothoe, a new genus of marine cyanobacteria (synechococcales) and three new species associated with sponges from the aegean sea. J. Phycol. 2019, 55, 882–897. [Google Scholar] [CrossRef] [PubMed]
- Malone, C.; Genuário, D.B.; Vaz, M.; Fiore, M.F.; Sant’Anna, C.L. Monilinema gen. nov. a homocytous genus (cyanobacteria, leptolyngbyaceae) from saline-alkaline lakes of pantanal wetlands, Brazil. J. Phycol. 2021, 57, 473–483. [Google Scholar] [CrossRef]
- Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Komárek, J. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 2018, 811, 7–17. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef]
- Iteman, I.; Rippka, R.; de Marsac, N.T.; Herdman, M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 2000, 146, 1275–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohunická, M.; Pietrasiak, N.; Johansen, J.R.; Berrendero-Gómez, E.; Hauer, T.; Gaysina, L.A.; Lukešová, A. Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—A tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 2015, 197, 84–103. [Google Scholar] [CrossRef] [Green Version]
- Berrendero-Gómez, E.; Johansen, J.R.; Kaštovský, J.; Bohunická, M.; Čapková, K. Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J. Phycol. 2016, 52, 638–655. [Google Scholar] [CrossRef] [PubMed]
- Mareš, J. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 2018, 811, 19–34. [Google Scholar] [CrossRef]
- Cai, F.; Yu, G.; Liu, Y.; Sun, Y.; Li, R. Description of two new species of Nostoc from China based on the polyphasic approach. Fottea 2021, 21, 259–271. [Google Scholar] [CrossRef]
- Li, X.; Li, R. Limnolyngbya circumcreta gen. & comb. nov. (synechococcales, cyanobacteria) with three geographical (provincial) genotypes in China. Phycologia 2016, 55, 478–491. [Google Scholar]
- Cai, F.; Yang, Y.; Wen, Q.; Li, R. Desmonostoc danxiaense sp. nov. (Nostocales, Cyanobacteria) from Danxia mountain in China based on polyphasic approach. Phytotaxa 2018, 367, 233–244. [Google Scholar] [CrossRef]
- Cai, F.; Li, X.; Yang, Y.; Jia, N.; Huo, D.; Li, R. Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia 2019, 58, 200–210. [Google Scholar]
- Cai, F.; Li, X.; Geng, R.; Peng, X.; Li, R. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea 2019, 19, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Wang, Y.; Yu, G.; Wang, J.; Peng, X.; Li, R. Proposal of Purpurea gen. nov. (Nostocales, Cyanobacteria), a novel cyanobacterial genus from wet soil samples in Tibet, China. Fottea 2020, 20, 86–97. [Google Scholar] [CrossRef]
- Cai, F.; Li, R. Purpureonostoc, a new name for a recently described genus of Nostoc-like cyanobacteria. Fottea 2020, 20, 111. [Google Scholar] [CrossRef]
- Cai, F.; Peng, X.; Li, R. Violetonostoc minutum gen et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. Algae 2020, 35, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cai, F.; Jia, N.; Li, R. Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 2019, 409, 46–160. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, N.; Geng, R.; Yu, G.; Li, R. Phylogenetic insights into Chroococcus-like taxa (Chroococcales, Cyanobacteria), describing Cryptochroococcus tibeticus gen. nov. sp. nov. and Limnococcus fonticola sp. nov. from Qinghai-Tibet plateau. J. Phycol. 2021, 7, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. N. hunanesis ZJJ01 | |||||||||||||||
2. N. alaskaensis T21 | 0.956 | ||||||||||||||
3. N. alaskaensis T29 | 0.956 | 1 | |||||||||||||
4. N. bijugata KOVACIK1986/5a | 0.955 | 0.956 | 0.956 | ||||||||||||
5. N. chupicuarensis PC471 | 0.967 | 0.979 | 0.979 | 0.969 | |||||||||||
6. N. conica strain SEV4-5-c1 | 0.957 | 0.96 | 0.96 | 0.964 | 0.975 | ||||||||||
7. N. epilithica str. Kovacik 1990/52 | 0.962 | 0.963 | 0.963 | 0.961 | 0.971 | 0.964 | |||||||||
8. N. sp. FI2-2HA2 | 0.957 | 0.958 | 0.958 | 0.977 | 0.973 | 0.983 | 0.966 | ||||||||
9. N. nodulosa PCC 7104 | 0.968 | 0.976 | 0.976 | 0.966 | 0.984 | 0.974 | 0.969 | 0.972 | |||||||
10. N. nodulosa UTEX 2910 | 0.966 | 0.978 | 0.978 | 0.968 | 0.996 | 0.974 | 0.974 | 0.972 | 0.983 | ||||||
11. N. radiophila TM S2B clone cl3 | 0.958 | 0.98 | 0.98 | 0.961 | 0.978 | 0.966 | 0.972 | 0.963 | 0.975 | 0.977 | |||||
12. N. ramsarensis KH-S S2.6 clone cl2 | 0.964 | 0.98 | 0.98 | 0.966 | 0.986 | 0.968 | 0.974 | 0.968 | 0.983 | 0.989 | 0.979 | ||||
13. N. ramsarensis KH-S S2.6 clone cl1 | 0.965 | 0.981 | 0.981 | 0.967 | 0.987 | 0.969 | 0.975 | 0.969 | 0.984 | 0.99 | 0.98 | 0.994 | |||
14. N. signiensis USMFM | 0.971 | 0.978 | 0.978 | 0.971 | 0.984 | 0.973 | 0.98 | 0.973 | 0.984 | 0.983 | 0.981 | 0.987 | 0.988 | ||
15. N. sp. FI2-2HA2 | 0.957 | 0.958 | 0.958 | 0.977 | 0.973 | 0.983 | 0.966 | 1 | 0.972 | 0.972 | 0.963 | 0.968 | 0.969 | 0.973 | |
16. N. svalbardensis 3220 | 0.96 | 0.961 | 0.961 | 0.953 | 0.966 | 0.959 | 0.96 | 0.959 | 0.971 | 0.964 | 0.962 | 0.969 | 0.97 | 0.978 | 0.959 |
Characters | N. hunanesis | N. signiensis | N. epilithica | N. bijugata | N. conica | N. chupicuarensis | N. nodulosa | N. radiophila | N. ramsarensis | N. alaskaensis | N. svalbardensis |
---|---|---|---|---|---|---|---|---|---|---|---|
Cell length (μm) | 1.02–2.74 | 1.0–2.0 (2.3) | 1.0–8.0 | 1.5–6.2 | 0.9–2.4 | 1.1–1.3 | 1.1–1.5 | 1.0–2.0 | (0.8) 1.0–1.5 | 2–4.1 | 1.2–2.1 |
Cell width (μm) | 1.10–1.34 | 1.0 (1.5) | 1.5–2.5 | 1.5–1.7 | 2.5–2.7 | 1.2 | 1.2–2.4 | 2.0–5.0 | 1.0–2.0 | 1.4–1.8 | 1.2–1.7 |
Cell shape | Cylindrical, longer than wide | Isodiametric, longer than wide/barrel shape | Barrel shaped, shorter to longer than wide | Isodiametric, longer than wide | Isodiametric, shorter than wide | Isodiametric | Isodiametric, longer than wide | Isodiametric, longer than wide | Isodiametric, longer than wide | More or lesslonger than wide | Shorter to longer than wide |
Cross-wall | Strongly constricted | Slightly constricted to strongly constricted | Distinctly constricted | Slightly constricted | Slightly constricted | Constricted | Slightly to strongly constricted | Distinctly constricted | Distinctly constricted | Not constricted | Strongly constricted |
Filaments | Forming nodules | Solitary, immotile, forming spirals | Forming nodules in low light | Rarely forming nodules | Rarely forming nodules | Multiseriate, motile, forming nodules | Forming nodules | No formation of nodules | Rrarely forming nodules | Forming nodules | Forming nodules |
Apical cells | Dome-shapedor elongated | Rounded | Rounded | Rounded | Rounded | Dome-shaped | Rounded | Rounded or elongated | ? | Rounded | Rounded |
Sheaths | Soft, layered, colorless, often becoming wide | Very thin, colorless | Thin, colorless, occasionally becoming wide and diffluent | Often absent, thin, colourless | Soft, thin, colorless | Thin, clear | Thin, colourless, occasionally becoming wide and diffluent | Thin, colorless | Thin, colorless | Usually present; thin, soft, colorless | Soft, thin, colorless, sometimes widened, hyaline |
Habitat | Freshwater pond, China | Soil, Signy Island, Antarctica | House wall, Peninsula Gargano, town of Vieste (Foggia), Italy | Littoral zone, eutrophic Lake Piaseczno, Poland | Sevilleta long- term ecological research, New Mexico; Soil, Chihuahuan Desert, USA | Stone monument surface, Central Mexico | Marine, South China Sea | Benthic mat in a thermal spring (<27 °C), Talesh Mahalleh, Ramsar Iran | Soil around a thermal spring (<32 °C), Khaksefid, Ramsar, Iran | Periphyton in a lake | Biocrust on sand |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, F.; Li, S.; Zhang, H.; Yu, G.; Li, R. Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a Freshwater Pond in China Based on a Polyphasic Approach. Diversity 2022, 14, 364. https://doi.org/10.3390/d14050364
Cai F, Li S, Zhang H, Yu G, Li R. Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a Freshwater Pond in China Based on a Polyphasic Approach. Diversity. 2022; 14(5):364. https://doi.org/10.3390/d14050364
Chicago/Turabian StyleCai, Fangfang, Shuheng Li, Hang Zhang, Gongliang Yu, and Renhui Li. 2022. "Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a Freshwater Pond in China Based on a Polyphasic Approach" Diversity 14, no. 5: 364. https://doi.org/10.3390/d14050364
APA StyleCai, F., Li, S., Zhang, H., Yu, G., & Li, R. (2022). Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a Freshwater Pond in China Based on a Polyphasic Approach. Diversity, 14(5), 364. https://doi.org/10.3390/d14050364