Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation, DNA Extraction, 16S rRNA and ERIC-PCR Analysis
2.2. Genome Sequencing
2.3. Phylogenetic, Phylogenomic and Average Nucleotide Identity (ANI) Analyses
2.4. Nodulation Assays and Nitrogenase Activity Assay
3. Results and Discussion
3.1. Rhizobial Diversity in Lysiloma and I. vera Nodules
3.1.1. Nodule Isolates, Growth and Genomic Fingerprints
3.1.2. Phylogenies of Several Nodule Isolates with Selected Genes
3.1.3. Genome Sizes, Phylogenomics and ANI of Genomes
3.2. Genomic Diversity
3.3. nod Genes in I. vera and Lysiloma Bradyrhizobia
3.4. Hydrogenases
3.5. Secretion Systems
3.6. Novel Genomospecies
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, M.; James, E.K.; Sprent, J.I.; Boddey, R.M.; Gross, E.; dos Reis, F.B., Jr. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: Values obtained using15N natural abundance. Plant Ecol. Divers. 2011, 4, 131–140. [Google Scholar] [CrossRef]
- Ferreira da Silva, A.; Santiago de Freitas, A.D.; Costa, T.L.; Fernandes-Junior, P.I.; Martins, L.M.V.; de Rosalia e Silva Santos, C.E.; Menezes, K.A.S.; de Sa Barretto Sampaio, E.V. Biological nitrogen fixation in tropical dry forests with different legume diversity and abundance. Nutr. Cycl. Agroecosyst. 2017, 107, 321–334. [Google Scholar] [CrossRef]
- Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 2017, 215, 40–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardley, J.; Sprent, J. Evolution and biogeography of actinorhizal plants and legumes: A comparison. J. Ecol. 2021, 109, 1098–1121. [Google Scholar] [CrossRef]
- Sprent, J.I.; Parsons, R. Nitrogen fixation in legume and non-legume trees. Field Crop. Res. 2000, 65, 183–196. [Google Scholar] [CrossRef]
- Franco, A.A.; De Faria, S.M. The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol. Biochem. 1997, 29, 897–903. [Google Scholar] [CrossRef]
- Diabate, M.; Munive, J.-A.; De Faria, S.M.; Ba, A.; Dreyfus, B.; Galiana, A. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. New Phytol. 2005, 166, 231–239. [Google Scholar] [CrossRef]
- de Faria, S.M.; Balieiro, F.D.C.; Paula, R.R.; Santos, F.M.; Zilli, J.E. Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations. In Mixed Plantations of Eucalyptus and Leguminous Trees; Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Moreno, M.; De-Bashan, L.E.; Hernandez, J.-P.; Lopez, B.R.; Bashan, Y. Success of long-term restoration of degraded arid land using native trees planted 11 years earlier. Plant Soil 2017, 421, 83–92. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Vítková, M.; Sádlo, J.; Roleček, J.; Petřík, P.; Sitzia, T.; Müllerová, J.; Pyšek, P. Robinia pseudoacacia-dominated vegetation types of Southern Europe: Species composition, history, distribution and management. Sci. Total Environ. 2020, 707, 134857. [Google Scholar] [CrossRef]
- Sankaran, K.V.; Murphy, S.T.; Sreenivasan, M.A. When good trees turn bad: The unintended spread of introduced plantation tree species in India. The unwelcome guests. In Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, China, 17–23 August 2005; pp. 39–46. [Google Scholar]
- Swelim, D.M.; Hashem, F.M.; Kuykendall, L.D.; Hegazi, N.I.; Abdel-Wahab, S.M. Host specificity and phenotypic diversity of Rhizobium strains nodulating Leucaena, Acacia, and Sesbania in Egypt. Biol. Fertil. Soils 1997, 25, 224–232. [Google Scholar] [CrossRef]
- Florentino, L.A.; Guimarães, A.P.; Rufini, M.; Da Silva, K.; Moreira, F.M.D.S. Sesbania virgata stimulates the occurrence of its microsymbiont in soils but does not inhibit microsymbionts of other species. Sci. Agric. 2009, 66, 667. [Google Scholar] [CrossRef]
- Florentino, L.A.; Moreira, F.M.S. Symbiotic and phenotypi characteristics of Azorhizobium doebereinerae, microsymbiot of Sesbania virgata. Rev. Árvore 2009, 33, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.M.D.S.; Cruz, L.; de Faria, S.M.; Marsh, T.; Martínez-Romero, E.; Pedrosa, F.D.O.; Pitard, R.M.; Young, J.P.W. Azorhizobium doebereinerae sp. nov. Microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol. 2006, 29, 197–206. [Google Scholar] [CrossRef]
- Rogel, M.A.; Ormeño-Orrillo, E.; Romero, E.M. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 2011, 34, 96–104. [Google Scholar] [CrossRef]
- Rogel, M.A.; Bustos, P.; Santamaría, R.I.; González, V.; Romero, D.; Cevallos, M.; Lozano, L.; Castro-Mondragón, J.; Martínez-Romero, J.; Ormeño-Orrillo, E.; et al. Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genom. 2014, 15, 575. [Google Scholar] [CrossRef] [Green Version]
- Dénarié, J.; Debellé, F.; Promé, J.-C. Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annu. Rev. Biochem. 1996, 65, 503–535. [Google Scholar] [CrossRef]
- Downie, J.A. Legume nodulation. Curr. Biol. 2014, 24, R184–R190. [Google Scholar] [CrossRef] [Green Version]
- Spaink, H.P. Root Nodulation and Infection Factors Produced by Rhizobial Bacteria. Annu. Rev. Microbiol. 2000, 54, 257–288. [Google Scholar] [CrossRef] [Green Version]
- Giraud, E.; Moulin, L.; Vallenet, D.; Barbe, V.; Cytryn, E.; Avarre, J.-C.; Jaubert, M.; Simon, D.; Cartieaux, F.; Prin, Y.; et al. Legumes Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia. Science 2007, 316, 1307–1312. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lyra, M.D.C.C.P.; Baena, F.J.L.; Madinabeitia, N.; Vinardell, J.M.; Espuny, M.R.; Cubo, M.T.; Belloguin, R.A.; Ruiz-Sainz, J.E.; Ollero, F.J. Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2006, 9, 125–133. [Google Scholar]
- Teulet, A.; Camuel, A.; Perret, X.; Giraud, E. The Versatile Roles of Type III Secretion Systems in Rhizobia-Legume Symbioses. Annu. Rev. Microbiol. 2022, 76, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Rathi, S.; Tak, N.; Bissa, G.; Chouhan, B.; Ojha, A.; Adhikari, D.; Barik, S.K.; Satyawada, R.R.; Sprent, J.I.; James, E.K.; et al. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol. Ecol. 2018, 94, fiy180. [Google Scholar] [CrossRef]
- Elliott, G.N.; Chou, J.-H.; Chen, W.-M.; Bloemberg, G.V.; Bontemps, C.; Martínez-Romero, E.; Velázquez, E.; Young, J.P.W.; Sprent, J.I.; James, E.K. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ. Microbiol. 2009, 11, 762–778. [Google Scholar] [CrossRef]
- dos Reis, F.B., Jr.; Simon, M.F.; Gross, E.; Boddey, R.M.; Elliott, G.N.; Neto, N.E.; Loureiro, M.D.F.; de Queiroz, L.P.; Scotti, M.R.; Chen, W.; et al. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol. 2010, 186, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, C.; Rogel, M.A.; Wiechmann, A.; Mussabekova, A.; Moody, S.; Simon, M.F.; Moulin, L.; Elliott, G.N.; Lacercat-Didier, L.; Dasilva, C.; et al. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytol. 2016, 209, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Pires, R.D.C.; dos Reis, F.B., Jr.; Zilli, J.E.; Fischer, D.; Hofmann, A.; James, E.K.; Simon, M.F. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 2018, 423, 411–428. [Google Scholar] [CrossRef] [Green Version]
- Zilli, J.; Carvalho, C.P.d.M.; Macedo, A.V.D.M.; Soares, L.H.D.B.; Gross, E.; James, E.K.; Simon, M.F.; de Faria, S.M. Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2021, 52, 2153–2168. [Google Scholar] [CrossRef]
- Ormeño-Orrillo, E.; Martinez-Romero, E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front. Microbiol. 2019, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Avontuur, J.R.; Palmer, M.; Beukes, C.W.; Chan, W.Y.; Tasiya, T.; van Zyl, E.; Coetzee, M.P.; Stepkowski, T.; Venter, S.N.; Steenkamp, E.T. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol. Phylogenetics Evol. 2022, 167, 107338. [Google Scholar] [CrossRef] [PubMed]
- Michel, D.C.; Da Costa, E.M.; Guimarães, A.A.; De Carvalho, T.S.; Caputo, P.S.D.C.; Willems, A.; Moreira, F.M.D.S. Bradyrhizobium campsiandrae sp. nov., a nitrogen-fixing bacterial strain isolated from a native leguminous tree from the Amazon adapted to flooded conditions. Arch. Microbiol. 2021, 203, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Aserse, A.A.; Woyke, T.; Kyrpides, N.; Whitman, W.B.; Lindstrom, K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand. Genom. Sci. 2017, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- da Costa, E.M.; Guimarães, A.A.; de Carvalho, T.S.; Rodrigues, T.L.; Ribeiro, P.R.D.A.; Lebbe, L.; Willems, A.; Moreira, F.M.D.S. Bradyrhizobium forestalis sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon. Arch. Microbiol. 2018, 200, 743–752. [Google Scholar] [CrossRef]
- Tian, R.; Parker, M.; Seshadri, R.; Reddy, T.; Markowitz, V.; Ivanova, N.; Pati, A.; Woyke, T.; Baeshen, M.N.; Baeshen, N.A.; et al. High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama. Stand. Genom. Sci. 2015, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Rhem, M.F.K.; Silva, V.C.; dos Santos, J.M.F.; Zilli, J.; James, E.K.; Simon, M.F.; Gross, E. The large mimosoid genus Inga Mill. (tribe Ingeae, Caesalpinioideae) is nodulated by diverse Bradyrhizobium strains in its main centers of diversity in Brazil. Syst. Appl. Microbiol. 2021, 44, 126268. [Google Scholar] [CrossRef]
- Da Silva, K.; De Meyer, S.; Rouws, L.F.M.; Farias, E.N.C.; Dos Santos, M.A.O.; O’Hara, G.; Ardley, J.K.; Willems, A.; Pitard, R.M.; Zilli, J.E. Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3395–3401. [Google Scholar] [CrossRef]
- Ormeño-Orrillo, E.; Rogel-Hernández, M.A.; Lloret, L.; López-López, A.; Martínez, J.; Barois, I.; Martínez-Romero, E. Change in Land Use Alters the Diversity and Composition of Bradyrhizobium Communities and Led to the Introduction of Rhizobium etli into the Tropical Rain Forest of Los Tuxtlas (Mexico). Microb. Ecol. 2012, 63, 822–834. [Google Scholar] [CrossRef]
- Parker, M.A. Divergent Bradyrhizobium symbionts on Tachigali versicolor from Barro Colorado Island, Panama. Syst. Appl. Microbiol. 2000, 23, 585–590. [Google Scholar] [CrossRef]
- Cervantes, V.; Arriaga, V.; Meave, J.; Carabias, J. Growth analysis of nine multipurpose woody legumes native from southern Mexico. For. Ecol. Manag. 1998, 110, 329–341. [Google Scholar] [CrossRef]
- Pennington, T.D. The Genus Inga: Botany; Royal Botanic Gardens: London, UK, 1997; p. 844. [Google Scholar]
- Richardson, J.E.; Pennington, R.T.; Pennington, T.D.; Hollingsworth, P.M. Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science 2001, 293, 2242–2245. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, N.; Melo, J.C.; Batista, L.F.; Paula-Souza, J.; Fronza, P.; Brandão, M.G. Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Res. Int. 2019, 119, 325–348. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, A.M.; Williams-Linera, G.; Manson, R. Tree species diversity and vegetation structure in shade coffee farms in Veracruz, Mexico. Agric. Ecosyst. Environ. 2008, 124, 160–172. [Google Scholar] [CrossRef]
- Guimarães, A.A.; Florentino, L.A.; Almeida, K.A.; Lebbe, L.; Silva, K.B.; Willems, A.; Moreira, F.M.D.S. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst. Appl. Microbiol. 2015, 38, 433–441. [Google Scholar] [CrossRef]
- Possette, R.F.D.S.; Rodrigues, W.A. O gênero Inga Mill. (Leguminosae-Mimosoideae) no estado do Paraná, Brasil. Acta Bot. Bras. 2010, 24, 354–368. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Romero, E.; Rosenblueth, M. Increased Bean (Phaseolus vulgaris L.) Nodulation Competitiveness of Genetically Modified Rhizobium Strains. Appl. Environ. Microbiol. 1990, 56, 2384–2388. [Google Scholar] [CrossRef] [Green Version]
- de Faria, S.M.; Ringelberg, J.J.; Gross, E.; Koenen, E.J.M.; Cardoso, D.; Ametsitsi, G.K.D.; Akomatey, J.; Maluk, M.; Tak, N.; Gehlot., H.S.; et al. The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes. bioRxiv 2022. bioRxiv:2022.03.04.482842. [Google Scholar] [CrossRef]
- Rogel, M.A.; Hernández-Lucas, I.; Kuykendall, L.D.; Balkwill, D.L.; Martinez-Romero, E. Nitrogen-Fixing Nodules with Ensifer adhaerens Harboring Rhizobium tropici Symbiotic Plasmids. Appl. Environ. Microbiol. 2001, 67, 3264–3268. [Google Scholar] [CrossRef] [Green Version]
- Versalovic, J.; Koeuth, T.; Lupski, R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.R.; Van Lammeren, A.A.; Hilhorst, H.W. Desiccation sensitivity and cell cycle aspects in seeds of Inga vera subsp. affinis. Seed Sci. Res. 2004, 14, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Jordan, D.C. Bradyrhizobium. In Bergey’s Manual of Systematic Bacteriology; Krieg, N.R., Holt, J.G., Eds.; Williams Wilkins: Philadelphia, PA, USA, 1984; Volume 1, pp. 242–244. [Google Scholar]
- Trinick, M.J.; Miller, C.; Hadobas, P.A. Formation and structure of root nodules induced on Macroptilium atropurpureum inoculated with various species of Rhizobium. Can. J. Bot. 1991, 69, 1520–1532. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: Chichester, UK, 1991; pp. 115–147. [Google Scholar]
- Vinuesa, P.; Silva, C.; Werner, D.; Martinez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogen. Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F. Trim Galore. A Wrapper Tool Around Cutadapt and FastQC to Consistently Apply Quality and Adapter Trimming to FastQ Files; Babraham Bioinformatics: Cambridge, UK, 2015; pp. 516–517. [Google Scholar]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Van der Graaf Bloois, L.; Wagenaar, J.A.; Zomer, A.L. RFPlasmid: Predicting plasmid sequences from short-read assembly data using machine learning. Microb. Genom. 2021, 7, 000683. [Google Scholar] [CrossRef]
- Antipov, D.; Hartwick, N.; Shen, M.; Raiko, M.; Lapidus, A.; Pevzner, P.A. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics 2016, 32, 3380–3387. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 2021, 37, 4572–4574. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, C.L.M.; Chooi, Y.-H. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.M.; Kelly, S. STAG: Species tree inference from all genes. bioRxiv 2018. bioRxiv:267914. [Google Scholar] [CrossRef]
- Emms, D.; Kelly, S. STRIDE: Species Tree Root Inference from Gene Duplication Events. Mol. Biol. Evol. 2017, 34, 3267–3278. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Nawrocki, E.; Eddy, R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37 (Suppl. 1), D141–D145. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Wernersson, R.; Pedersen, A. RevTrans—Constructing alignments of coding DNA from aligned amino acid sequences. Nucleic Acids Res. 2003, 31, 3537–3539. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Fåhraeus, G. The Infection of Clover Root Hairs by Nodule Bacteria Studied by a Simple Glass Slide Technique. J. Gen. Microbiol. 1957, 16, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Barcellos, F.G.; Menna, P.; da Silva Batista, J.S.; Hungria, M. Evidence of Horizontal Transfer of Symbiotic Genes from a Bradyrhizobium japonicum Inoculant Strain to Indigenous Diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah Soil. Appl. Environ. Microbiol. 2007, 73, 2635–2643. [Google Scholar] [CrossRef] [Green Version]
- Renier, A.; Jourand, P.; Rapior, S.; Poinsot, V.; Sy, A.; Dreyfus, B.; Moulin, L. Symbiotic properties of Methylobacterium nodulans ORS 2060T: A classic process for an atypical symbiont. Soil Biol. Biochem. 2008, 40, 1404–1412. [Google Scholar] [CrossRef]
- Firmin, J.L.; Wilson, K.E.; Carlson, R.W.; Davies, A.E.; Downie, J.A. Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol. Microbiol. 1993, 10, 351–360. [Google Scholar] [CrossRef]
- Safronova, V.I.; Kimeklis, A.K.; Chizhevskaya, E.P.; Belimov, A.A.; Andronov, E.E.; Pinaev, A.G.; Pukhaev, A.R.; Popov, K.P.; Tikhonovich, I.A. Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed. Antonie Van Leeuwenhoek 2014, 105, 389–399. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Rodríguez-Navarro, D.; Kawaharada, Y.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.; Soria-Díaz, M.E.; Pérez-Montaño, F.; Fernández-Perea, J.; Niu, Y.; Alias-Villegas, C.; et al. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ. Microbiol. 2019, 21, 1718–1739. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Alias-Villegas, C.; Navarro-Gómez, P.; Almozara, A.; Rodríguez-Carvajal, M.A.; Medina, C.; Vinardell, J. Sinorhizobium fredii HH103syrMinactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host-range to Lotus japonicus. Environ. Microbiol. 2020, 22, 1104–1124. [Google Scholar] [CrossRef]
- Fuentes-Romero, F.; Navarro-Gómez, P.; Ayala-García, P.; Moyano-Bravo, I.; López-Baena, F.-J.; Pérez-Montaño, F.; Ollero-Márquez, F.-J.; Acosta-Jurado, S.; Vinardell, J.-M. The nodD1 Gene of Sinorhizobium fredii HH103 Restores Nodulation Capacity on Bean in a Rhizobium tropici CIAT 899 nodD1/nodD2 Mutant, but the Secondary Symbiotic Regulators nolR, nodD2 or syrM Prevent HH103 to Nodulate with This Legume. Microorganisms 2022, 10, 139. [Google Scholar] [CrossRef]
- Van Soom, C.; Rumjanek, N.; Vanderleyden, J.; Neves, M.C.P. Hydrogenase in Bradyrhizobium japonicum: Genetics, regulation and effect on plant growth. World J. Microbiol. Biotechnol. 1993, 9, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Brito, B.; Palacios, J.M.; Hidalgo, E.; Imperial, J.; Ruiz-Argüeso, T. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J. Bacteriol. 1994, 176, 5297–5303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkrumah, P.N.; Gutiérrez, D.M.N.; Tisserand, R.; van der Ent, A.; Echevarria, G.; Pollard, A.J.; Chaney, R.L.; Morel, J.L. Element Case Studies: Nickel (Tropical Regions). In Agromining: Farming for Metals. Mineral Resource Reviews; van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, M.O., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2020; pp. 365–383. [Google Scholar] [CrossRef]
- Deakin, W.J.; Broughton, W.J. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Genet. 2009, 7, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.S.; Sadowsky, M.J. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front. Plant Sci. 2015, 6, 491. [Google Scholar] [CrossRef] [Green Version]
- Ratu, S.T.N.; Teulet, A.; Miwa, H.; Masuda, S.; Nguyen, H.P.; Yasuda, M.; Sato, S.; Kaneko, T.; Hayashi, M.; Giraud, E.; et al. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci. Rep. 2021, 11, 2034. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; Jiménez-Guerrero, I.; Acosta-Jurado, S.; Navarro-Gómez, P.; Ollero, F.J.; Ruiz-Sainz, J.E.; López-Baena, F.J.; Vinardell, J.M. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci. Rep. 2016, 6, 31592. [Google Scholar] [CrossRef] [Green Version]
- López-Baena, F.J.; Ruiz-Sainz, J.E.; Rodriguez-Carvajal, M.A.; Vinardell, J.-M. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int. J. Mol. Sci. 2016, 17, 755. [Google Scholar] [CrossRef] [Green Version]
- Busset, N.; Gully, D.; Teulet, A.; Fardoux, J.; Camuel, A.; Cornu, D.; Severac, D.; Giraud, E.; Mergaert, P. The Type III Effectome of the Symbiotic Bradyrhizobium vignae Strain ORS3257. Biomolecules 2021, 11, 1592. [Google Scholar] [CrossRef]
- Mercante, V.; Duarte, C.M.; Sãnchez, C.M.; Zalguizuri, A.; Caetano-Anollés, G.; Lepek, V.C. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes. Front. Plant Sci. 2015, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, H.B.; Pueppke, S.G. Cultivar-specificity genes of the nitrogen-fixing soybean symbiont, Rhizobium fredii USDA257, also regulate nodulation of Erythrina SPP. Am. J. Bot. 1994, 81, 38–45. [Google Scholar] [CrossRef]
- Teulet, A.; Busset, N.; Fardoux, J.; Gully, D.; Chaintreuil, C.; Cartieaux, F.; Jauneau, A.; Comorge, V.; Okazaki, S.; Kaneko, T.; et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl. Acad. Sci. USA 2019, 116, 21758–21768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, S.; Mande, S.S. Identification and Functional Characterization of Gene Components of Type VI Secretion System in Bacterial Genomes. PLoS ONE 2008, 3, e2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinero-Lanzarote, A.; Pacheco-Moreno, A.; Domingo-Serrano, L.; Durán, D.; Ormeño-Orrillo, E.; Martinez-Romero, E.; Albareda, M.; Palacios, J.M.; Rey, L. The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis. FEMS Microbiol. Ecol. 2019, 95, fiz054. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.; Negrete-Yankelevich, S.; Godinez, L.G.; Reyes, J.; Degli Esposti, M.; Romero, E.M. Short-Term Evolution of Rhizobial Strains Toward Sustainability in Agriculture. In Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability; Castro-Sowinski, S., Ed.; Springer: Singapore, 2016; Volume 1, pp. 277–292. [Google Scholar] [CrossRef]
- Steenkamp, E.T.; Stępkowski, T.; Przymusiak, A.; Botha, W.J.; Law, I.J. Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol. Phylogenet. Evol. 2008, 48, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.S.S.; Hungria, M.; Barcellos, F.G.; Ferreira, M.C.; Mendes, I.C. Variability in Bradyrhizobium japonicum and B. elkanii Seven Years after Introduction of both the Exotic Microsymbiont and the Soybean Host in a Cerrados Soil. Microb. Ecol. 2007, 53, 270–284. [Google Scholar] [CrossRef] [PubMed]
- López-Guerrero, M.G.; Ormeño-Orrillo, E.; Acosta, J.L.; Mendoza-Vargas, A.; Rogel, M.A.; Ramírez, M.A.; Rosenblueth, M.; Martínez-Romero, J.; Martínez-Romero, E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012, 68, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.M.; Ge, C.; Cui, Z.; Li, J.; Fan, H. Bradyrhizobium liaoningense sp. nov., Isolated from the Root Nodules of Soybeans. Int. J. Syst. Bacteriol. 1995, 45, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Klepa, M.S.; Helene, L.C.F.; O’Hara, G.; Hungria, M. Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia. Int. J. Syst. Evol. Microbiol. 2019, 71, 004742. [Google Scholar] [CrossRef]
- Parker, M.A. The Spread of Bradyrhizobium Lineages Across Host Legume Clades: From Abarema to Zygia. Microb. Ecol. 2015, 69, 630–640. [Google Scholar] [CrossRef]
- Menna, P.; Hungria, M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: Supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol. 2011, 61, 3052–3067. [Google Scholar] [CrossRef]
- dos Santos, J.M.F.; Alves, P.A.C.; Silva, V.C.; Rhem, M.F.K.; James, E.K.; Gross, E. Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (Moench) (Fabaceae, Caesalpinioideae) species in Brazil. Syst. Appl. Microbiol. 2017, 40, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Salmi, A.; Boulila, F.; Bourebaba, Y.; Le Roux, C.; Belhadi, D.; de Lajudie, P. Phylogenetic diversity of Bradyrhizobium strains nodulating Calicotome spinosa in the Northeast of Algeria. Syst. Appl. Microbiol. 2018, 41, 452–459. [Google Scholar] [CrossRef] [PubMed]
- George, M.L.C.; Young, J.P.W.; Borthakur, D. Genetic characterization of Rhizobium sp. strain TAL1145 that nodulates tree legumes. Can. J. Microbiol. 1994, 40, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Romero, E.; Segovia, L.; Mercante, F.M.; Franco, A.A.; Graham, P.; Pardo, M.A. Rhizobium tropici, a Novel Species Nodulating Phaseolus vulgaris L. Beans and Leucaena sp. Trees. Int. J. Syst. Bacteriol. 1991, 41, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Bahena, M.H.; Flores-Félix, J.D.; Velázquez, E.; Peix, Á. The Mimosoid tree Leucaena leucocephala can be nodulated by the symbiovar genistearum of Bradyrhizobium canariense. Syst. Appl. Microbiol. 2020, 43, 126041. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.H.; Gris, C.; Cruveiller, S.; Pouzet, C.; Tasse, L.; LeRu, A.; Maillard, A.; Médigue, C.; Batut, J.; Masson-Boivin, C.; et al. Experimental evolution of nodule intracellular infection in legume symbionts. ISME J. 2013, 7, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Romero, E. Coevolution in Rhizobium-Legume Symbiosis? DNA Cell Biol. 2009, 28, 361–370. [Google Scholar] [CrossRef]
Bradyrhizobium Strains | Host | Chromosome (pb) | GC (%) | ANI to the Closest Species (%) | Plasmid |
---|---|---|---|---|---|
B51278 | Lysiloma divaricatum | 8,566,773 | 63.98 | 97.14 with B. brasilense | no |
B51279 | Lysiloma divaricatum | 8,361,602 | 63.97 | 99.99 with B. cajani | no |
CCGB12 | Lysiloma sp. | 9,426,670 | 63.11 | 90.61 with B. zhanjiangense | no |
CCGB01 | Lysiloma sp. | 9,317,328 | 63.79 | 91.05 with B. lupini | no |
CCGB20 | Lysiloma sp. | 9,227,337 | 63.84 | 91.07 with B. lupini | no |
CCGBUVB14 | Inga vera | 9,769,664 | 63.30 | 91.80 with B. rifense | no |
CCGUVB4N | Inga vera | 9,212,720 | 63.56 | 91.83 with B. rifense | no |
CCGUVB1N3 | Inga vera | 9,882,385 | 62.98 | 87.58 with B. centrolobii | yes |
CCGUVB23 | Inga vera | 10,272,334 | 62.69 | 87.51 with B. centrolobii | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Oaxaca, D.; Claro-Mendoza, K.L.; Rogel, M.A.; Rosenblueth, M.; Velasco-Trejo, J.A.; Alarcón-Gutiérrez, E.; García-Pérez, J.A.; Martínez-Romero, J.; James, E.K.; Martínez-Romero, E. Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade). Diversity 2022, 14, 518. https://doi.org/10.3390/d14070518
Hernández-Oaxaca D, Claro-Mendoza KL, Rogel MA, Rosenblueth M, Velasco-Trejo JA, Alarcón-Gutiérrez E, García-Pérez JA, Martínez-Romero J, James EK, Martínez-Romero E. Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade). Diversity. 2022; 14(7):518. https://doi.org/10.3390/d14070518
Chicago/Turabian StyleHernández-Oaxaca, Diana, Karen L. Claro-Mendoza, Marco A. Rogel, Mónica Rosenblueth, Jorge A. Velasco-Trejo, Enrique Alarcón-Gutiérrez, José Antonio García-Pérez, Julio Martínez-Romero, Euan K. James, and Esperanza Martínez-Romero. 2022. "Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade)" Diversity 14, no. 7: 518. https://doi.org/10.3390/d14070518
APA StyleHernández-Oaxaca, D., Claro-Mendoza, K. L., Rogel, M. A., Rosenblueth, M., Velasco-Trejo, J. A., Alarcón-Gutiérrez, E., García-Pérez, J. A., Martínez-Romero, J., James, E. K., & Martínez-Romero, E. (2022). Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade). Diversity, 14(7), 518. https://doi.org/10.3390/d14070518