Application of Wheat Straw Compost Mixed with Chemical Fertilizer Regulates Soil Bacterial Community Diversity in Tea (Camellia sinensis) Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Fertilizer Preparation
2.3. Experimental Design
2.4. Sample Collection
2.5. Determination of Physicochemical Properties of Soil
2.6. Determination of Tea Quality Indices
2.7. Soil DNA Extraction, PCR, and MiSeq Sequencing
2.8. Sequence Processing and Bioinformatic Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of Fertilization Management on Tea Plantation Soil Physicochemical Properties
3.2. Effect of Fertilization Management on the Quality of Tea
3.3. Effects on the Diversity of Soil Bacterial Community
3.4. Effects on the Composition of Soil Bacterial Community
3.5. Correlation Analysis between Bacterial Communities and Soil Properties
3.6. Correlation Analysis between Bacterial Communities and the Quality of Tea
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karabegović, I.; Portilla-Fernandez, E.; Li, Y.; Ma, J.; Maas, S.C.; Sun, D.; Hu, E.A.; Kühnel, B.; Zhang, Y.; Ambatipudi, S. Epigenome-wide association meta-analysis of DNA methylation with coffee and tea consumption. Nat. Commun. 2021, 12, 2830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, Y.; Zhang, M.; Zhang, Y.; Ji, H.; Shen, L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J. Pharm. Anal. 2021, 11, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, R.; Chen, R.; Li, Y.C.; Peng, Y.; Liu, C. Multielemental Analysis Associated with Chemometric Techniques for Geographical Origin Discrimination of Tea Leaves (Camelia sinensis) in Guizhou Province, SW China. Molecules 2018, 23, 3013. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Maghanga, J.; Kituyi, J.; Kisinyo, P.; Ng’Etich, W. Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan tea plantation. J. Chem. 2013, 2013, 196516. [Google Scholar] [CrossRef]
- Ni, K.; Shi, Y.-Z.; Yi, X.-Y.; Zhang, Q.-F.; Fang, L.; Ma, L.-F.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar]
- Zhang, M.; Fang, L. Tea plantation–induced activation of soil heavy metals. Commun. Soil Sci. Plant Anal. 2007, 38, 1467–1478. [Google Scholar] [CrossRef]
- Ruan, J.; Ma, L.; Yang, Y. Magnesium nutrition on accumulation and transport of amino acids in tea plants. J. Sci. Food Agric. 2012, 92, 1375–1383. [Google Scholar] [CrossRef]
- Le, V.S.; Herrmann, L.; Hudek, L.; Nguyen, T.B.; Bräu, L.; Lesueur, D. How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: A review. Environ. Chem. Lett. 2021, 738, 139840. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Liu, C.; Wei, C.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, L.; Wang, Y.; Fan, K.; Xu, Q.; Li, Y.; Ma, Q.; Wang, J.; Ren, W.; Ding, Z. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 2020, 20, 190. [Google Scholar] [CrossRef]
- Gu, S.; Hu, Q.; Cheng, Y.; Bai, L.; Liu, Z.; Xiao, W.; Gong, Z.; Wu, Y.; Feng, K.; Deng, Y. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Tillage Res. 2019, 195, 104356. [Google Scholar] [CrossRef]
- Sarmah, M.; Borgohain, A.; Gogoi, B.B.; Yeasin, M.; Paul, R.K.; Malakar, H.; Handique, J.G.; Saikia, J.; Deka, D.; Khare, P. Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour. J. Hazard. Mater. 2023, 442, 129970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, J.L.; Zhang, C.; Chen, S.X. The Effects of three fertilization treatments on soil fertility and yield and quality of fresh leaves in tea gardens. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2020; pp. 153–159. [Google Scholar]
- Athallah, F.N.F.; Wulansari, R. Evaluation of biochar from tea pruning residue and tea fluff compost utilization to alleviate soil chemical properties on an Inceptisol. J. Degrad. Min. Lands Manag. 2022, 9, 3677–3683. [Google Scholar] [CrossRef]
- Qiu, S.-L.; Wang, L.-M.; Huang, D.-F.; Lin, X.-J. Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity. Chil. J. Agric. Res. 2014, 74, 333–339. [Google Scholar] [CrossRef]
- De Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Kong, A.Y.; Scow, K.M.; Córdova-Kreylos, A.L.; Holmes, W.E.; Six, J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 2011, 43, 20–30. [Google Scholar] [CrossRef]
- Tian, W.; Wang, L.; Li, Y.; Zhuang, K.; Li, G.; Zhang, J.; Xiao, X.; Xi, Y. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ. 2015, 213, 219–227. [Google Scholar] [CrossRef]
- Tan, L.; Gu, S.; Li, S.; Ren, Z.; Deng, Y.; Liu, Z.; Gong, Z.; Xiao, W.; Hu, Q. Responses of microbial communities and interaction networks to different management practices in tea plantation soils. Sustainability 2019, 11, 4428. [Google Scholar] [CrossRef]
- Wang, L.-M.; Huang, D.-F.; Fang, Y.; Wang, F.; Li, F.-L.; Liao, M. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chil. J. Agric. Res. 2017, 77, 355–364. [Google Scholar] [CrossRef]
- Ji, L.; Wu, Z.; You, Z.; Yi, X.; Ni, K.; Guo, S.; Ruan, J. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- Fu, H.; Li, H.; Yin, P.; Mei, H.; Li, J.; Zhou, P.; Wang, Y.; Ma, Q.; Jeyaraj, A.; Thangaraj, K. Integrated application of rapeseed cake and green manure enhances soil nutrients and microbial communities in tea garden soil. Sustainability 2021, 13, 2967. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L.J.B. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.J.B. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Shui, S.; Chang, K. Contributions of Technical Progress to the Tea Economy—A Quantitative Assessment. In Proceedings of the International TeaWorkshop: Advances in Tea Sciences and Technologies and the World Tea Economy, Beijing, China, 9–11 July 1996. [Google Scholar]
- Sun, L.; Wang, Y.; Ma, D.; Wang, L.; Zhang, X.; Ding, Y.; Fan, K.; Xu, Z.; Yuan, C.; Jia, H. Differential responses of the rhizosphere microbiome structure and soil metabolites in tea (Camellia sinensis) upon application of cow manure. BMC Microbiol. 2022, 22, 55. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Shi, Y.; Song, Y.; Wang, Y.; Fan, K.; Zong, R.; Li, Y.; Wang, L.; Bi, C. The application of enzymatic fermented soybean effectively regulates associated microbial communities in tea soil and positively affects lipid metabolites in tea new shoots. Front. Microbiol. 2022, 13, 992823. [Google Scholar] [CrossRef]
- Sun, L.; Fan, K.; Wang, L.; Ma, D.; Wang, Y.; Kong, X.; Li, H.; Ren, Y.; Ding, Z.J.M. Correlation among Metabolic Changes in Tea Plant Camellia sinensis (L.) Shoots, Green Tea Quality and the Application of Cow Manure to Tea Plantation Soils. Molecules 2021, 26, 6180. [Google Scholar] [CrossRef]
- Hua, W.; Luo, P.; An, N.; Cai, F.; Zhang, S.; Chen, K.; Yang, J.; Han, X. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci. Rep. 2020, 10, 14882. [Google Scholar] [CrossRef]
- Dahunsi, S.; Oranusi, S.; Efeovbokhan, V.; Adesulu-Dahunsi, A.; Ogunwole, J. Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel. Sci. Rep. 2021, 11, 4696. [Google Scholar] [CrossRef]
- Qiu, W.; Su, H.; Yan, L.; Ji, K.; Liu, Q.; Jian, H. Organic fertilization assembles fungal communities of wheat rhizosphere soil and suppresses the population growth of Heterodera avenae in the field. Front. Plant Sci. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Jia, X.; Kang, J.; Lin, S.; Wu, Z.; Wang, H. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, X.; Shi, Y.; Yi, X.; Ji, L.; Cheng, Y.; Ni, K.; Ruan, J. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Appl. Soil Ecol. 2021, 166, 103976. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, Y.; Xiong, W.; Ran, W.; Shen, B.; Shen, Q.; Zhang, R. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 2014, 9, e85301. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. GCB Bioenergy 2022, 14, 481–495. [Google Scholar] [CrossRef]
- Bag, S.; Mondal, A.; Banik, A. Exploring tea (Camellia sinensis) microbiome: Insights into the functional characteristics and their impact on tea growth promotion. Microbiol. Res. 2022, 254, 126890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Yergeau, E.; Wong, L.C.; Pijl, A.S.; van Veen, J.A.; Kowalchuk, G. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 2012, 79, 12–24. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Jiang, C.; Wu, M.; Liu, M.; Li, Z. Distinct Successions of common and rare bacteria in soil under humic acid amendment—A microcosm study. Front. Microbiol. 2019, 10, 2271. [Google Scholar] [CrossRef] [PubMed]
Year | Sample | Soil pH | SOM (g·kg−1) | TN (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|---|---|---|
2019 | CK | 5.90 ± 0.02 ab | 8.96 ± 0.04 f | 1.09 ± 0.02 d | 132.67 ± 4.92 f | 59.90 ± 1.26 c | 177.33 ± 2.05 e |
T1 | 6.20 ± 0.16 a | 9.71 ± 0.21 e | 1.20 ± 0.03 c | 151.33 ± 4.64 e | 92.33 ± 0.38 a | 181.33 ± 1.25 e | |
T2 | 6.13 ± 0.17 a | 10.27 ± 0.02 d | 1.23 ± 0.04 c | 176.33 ± 5.25 cd | 80.83 ± 1.27 b | 216.67 ± 4.64 d | |
T3 | 6.10 ± 0.24 a | 13.26 ± 0.03 c | 1.49 ± 0.03 b | 187.67 ± 4.99 c | 77.70 ± 0.51 b | 324.33 ± 3.09 c | |
T4 | 6.03 ± 0.17 ab | 13.99 ± 0.06 b | 1.89 ± 0.05 a | 212.33 ± 8.22 b | 53.47 ± 6.25 d | 363.00 ± 5.72 b | |
T5 | 5.60 ± 0.24 bc | 14.37 ± 0.08 a | 1.89 ± 0.05 a | 234.67 ± 8.99 a | 41.10 ± 3.62 e | 384.07 ± 5.28 a | |
T6 | 5.37 ± 0.09 c | 8.46 ± 0.11 g | 1.25 ± 0.03 c | 169.33 ± 4.92 d | 36.80 ± 2.14 e | 387.00 ± 4.97 a | |
2020 | CK | 5.53 ± 0.21 abc | 10.58 ± 0.21 e | 1.14 ± 0.16 c | 234.67 ± 17.02 cde | 59.98 ± 5.30 c | 97.33 ± 18.37 bc |
T1 | 5.70 ± 0.08 a | 16.71 ± 0.33 b | 1.18 ± 0.14 bc | 176.67 ± 14.29 e | 55.53 ± 6.65 c | 85.67 ± 11.59 bc | |
T2 | 5.63 ± 0.01 a | 12.08 ± 0.15 d | 1.28 ± 0.12 bc | 216.33 ± 9.43 de | 61.65 ± 3.08 c | 80.67 ± 5.25 c | |
T3 | 5.57 ± 0.09 ab | 15.20 ± 0.09 c | 1.62 ± 0.17 ab | 286.00 ± 9.09 bc | 82.10 ± 2.83 b | 107.33 ± 0.94 bc | |
T4 | 5.20 ± 0.14 bc | 17.29 ± 0.01 b | 1.74 ± 0.25 a | 366.33 ± 24.90 a | 103.37 ± 10.05 a | 150.00 ± 17.66 a | |
T5 | 5.17 ± 0.29 c | 18.07 ± 0.16 a | 1.29 ± 0.30 bc | 307.00 ± 24.26 ab | 82.93 ± 12.00 b | 112.33 ± 6.65 b | |
T6 | 5.20 ± 0.14 bc | 13.38 ± 0.53 d | 1.14 ± 0.11 c | 241.67 ± 60.50 cd | 55.82 ± 8.92 c | 114.00 ± 17.66 b |
Year | Sample | TPs (g·100 g−1) | FAA (g·100 g−1) | Caffeine (g·100 g−1) | TP/AA | WEs (g·100 g−1) |
---|---|---|---|---|---|---|
2019 | CK | 15.00 ± 0.16 c | 4.00 ± 0.22 b | 2.80 ± 0.22 a | 3.76 ± 0.22 abc | 47.00 ± 0.16 abc |
T1 | 15.60 ± 0.22 ab | 4.50 ± 0.08 a | 2.80 ± 0.16 a | 3.47 ± 0.10 c | 46.80 ± 0.29 abc | |
T2 | 15.10 ± 0.22 bc | 4.20 ± 0.14 a | 2.50 ± 0.14 a | 3.60 ± 0.07 bc | 47.00 ± 0.24 abc | |
T3 | 14.70 ± 0.37 c | 4.10 ± 0.16 b | 2.60 ± 0.24 a | 3.59 ± 0.15 bc | 46.70 ± 0.16 bc | |
T4 | 16.00 ± 0.16 a | 4.10 ± 0.08 b | 2.70 ± 0.22 a | 3.90 ± 0.07 ab | 47.50 ± 0.22 a | |
T5 | 15.80 ± 0.24 a | 4.10 ± 0.16 b | 2.70 ± 0.22 a | 3.86 ± 0.19 ab | 46.30 ± 0.14 c | |
T6 | 16.00 ± 0.24 a | 4.00 ± 0.08 b | 2.80 ± 0.14 a | 4.00 ± 0.02 a | 47.40 ± 0.64 bc | |
2020 | CK | 17.60 ± 0.36 d | 4.50 ± 0.24 ab | 4.00 ± 0.14 a | 3.90 ± 0.23 b | 47.30 ± 0.24 e |
T1 | 17.60 ± 0.22 d | 4.40 ± 0.29 ab | 3.70 ± 0.16 ab | 4.00 ± 0.21 b | 46.40 ± 0.24 f | |
T2 | 18.70 ± 0.24 b | 4.00 ± 0.22 b | 3.60 ± 0.22 ab | 4.70 ± 0.28 a | 48.70 ± 0.16 c | |
T3 | 17.90 ± 0.16 cd | 4.40 ± 0.16 ab | 3.50 ± 0.24 ab | 4.10 ± 0.14 b | 48.10 ± 0.16 d | |
T4 | 16.50 ± 0.33 e | 4.80 ± 0.14 a | 3.40 ± 0.16 b | 3.40 ± 0.17 c | 48.60 ± 0.08 c | |
T5 | 18.20 ± 0.22 bc | 4.50 ± 0.22 ab | 3.40 ± 0.24 b | 4.00 ± 0.14 b | 49.20 ± 0.24 b | |
T6 | 19.80 ± 0.16 a | 4.00 ± 0.08 b | 3.70 ± 0.22 ab | 5.00 ± 0.09 a | 49.80 ± 0.16 a |
Year | Sample | Chao1 | Shannon | Simpson |
---|---|---|---|---|
2019 | CK | 5175.443 ± 848.703 a | 9.770 ± 0.860 ab | 0.990 ± 0.010 a |
T1 | 4274.222 ± 784.761 ab | 9.150 ± 1.040 ab | 0.981 ± 0.015 a | |
T2 | 5197.073 ± 266.914 a | 10.247 ± 0.166 ab | 0.997 ± 0.001 a | |
T3 | 4891.523 ± 684.683 ab | 9.969 ± 0.489 ab | 0.996 ± 0.003 a | |
T4 | 5686.680 ± 541.389 a | 10.354 ± 0.244 a | 0.996 ± 0.001 a | |
T5 | 4184.350 ± 530.579 ab | 8.618 ± 0.618 b | 0.982 ± 0.007 a | |
T6 | 3471.300 ± 809.504 b | 8.624 ± 0.936 b | 0.983 ± 0.012 a | |
2020 | CK | 5893.797 ± 329.853 ab | 10.978 ± 0.136 a | 0.999 ± 0.000 a |
T1 | 6613.487 ± 414.136 a | 11.177 ± 0.157 a | 0.998 ± 0.001 a | |
T2 | 6512.830 ± 432.754 a | 11.197 ± 0.115 a | 0.999 ± 0.002 a | |
T3 | 6615.643 ± 319.277 a | 11.220 ± 0.034 a | 0.999 ± 0.000 a | |
T4 | 5486.453 ± 474.400 b | 10.922 ± 0.234 a | 0.998 ± 0.001 a | |
T5 | 5889.917 ± 323.874 ab | 10.991 ± 0.149 a | 0.999 ± 0.000 a | |
T6 | 5984.617 ± 460.159 ab | 11.122 ± 0.121 a | 0.999 ± 0.000 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Song, D.; Wang, K.; Fang, F.; Han, S.; Yang, F.; Ding, S. Application of Wheat Straw Compost Mixed with Chemical Fertilizer Regulates Soil Bacterial Community Diversity in Tea (Camellia sinensis) Plantation. Diversity 2023, 15, 580. https://doi.org/10.3390/d15040580
Fu H, Song D, Wang K, Fang F, Han S, Yang F, Ding S. Application of Wheat Straw Compost Mixed with Chemical Fertilizer Regulates Soil Bacterial Community Diversity in Tea (Camellia sinensis) Plantation. Diversity. 2023; 15(4):580. https://doi.org/10.3390/d15040580
Chicago/Turabian StyleFu, Haiyan, Dapeng Song, Kunpeng Wang, Fengxiang Fang, Shunying Han, Fengshan Yang, and Shibo Ding. 2023. "Application of Wheat Straw Compost Mixed with Chemical Fertilizer Regulates Soil Bacterial Community Diversity in Tea (Camellia sinensis) Plantation" Diversity 15, no. 4: 580. https://doi.org/10.3390/d15040580
APA StyleFu, H., Song, D., Wang, K., Fang, F., Han, S., Yang, F., & Ding, S. (2023). Application of Wheat Straw Compost Mixed with Chemical Fertilizer Regulates Soil Bacterial Community Diversity in Tea (Camellia sinensis) Plantation. Diversity, 15(4), 580. https://doi.org/10.3390/d15040580