Coexistence and Spatial Distribution of Invasive and Sylvatic Container-Breeding Mosquitoes in City–Forest Ecotone within the Brazilian Semi-arid
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of Sampled Sites and Habitat Characteristics
3.2. Rainfall Regime
3.3. Interaction between Species
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weaver, S.C.; Charlier, C.; Vasilakis, N.; Lecuit, M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu. Rev. Med. 2018, 69, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.B.B.; Beier, J.C.; Benelli, G. Complexity of the Relationship between Global Warming and Urbanization—An Obscure Future for Predicting Increases in Vector-Borne Infectious Diseases. Curr. Opin. Insect Sci. 2019, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.J.; Munshi-South, J. Evolution of Life in Urban Environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knop, E. Biotic Homogenization of Three Insect Groups due to Urbanization. Glob. Chang. Biol. 2016, 22, 228–236. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Rose, N.H.; Sylla, M.; Badolo, A.; Lutomiah, J.; Ayala, D.; Aribodor, O.B.; Ibe, N.; Akorli, J.; Otoo, S.; Mutebi, J.-P.; et al. Climate and Urbanization Drive Mosquito Preference for Humans. Curr. Biol. 2020, 30, 3570–3579.e6. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The Global Distribution of the Arbovirus Vectors Aedes Aegypti and Ae. Albopictus. Elife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Chandrasegaran, K.; Lahondère, C.; Escobar, L.E.; Vinauger, C. Linking Mosquito Ecology, Traits, Behavior, and Disease Transmission. Trends Parasitol. 2020, 36, 393–403. [Google Scholar] [CrossRef]
- Laporta, G.Z.; Potter, A.M.; Oliveira, J.F.A.; Bourke, B.P.; Pecor, D.B.; Linton, Y.-M. Global Distribution of Aedes Aegypti and Aedes Albopictus in a Climate Change Scenario of Regional Rivalry. Insects 2023, 14, 49. [Google Scholar] [CrossRef]
- Gardner, A.M.; Anderson, T.K.; Hamer, G.L.; Johnson, D.E.; Varela, K.E.; Walker, E.D.; Ruiz, M.O. Terrestrial Vegetation and Aquatic Chemistry Influence Larval Mosquito Abundance in Catch Basins, Chicago, USA. Parasites Vectors 2013, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Wimberly, M.C.; Davis, J.K.; Evans, M.V.; Hess, A.; Newberry, P.M.; Solano-Asamoah, N.; Murdock, C.C. Land Cover Affects Microclimate and Temperature Suitability for Arbovirus Transmission in an Urban Landscape. PLoS Negl. Trop. Dis. 2020, 14, e0008614. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Turo, K.J.; Riley, C.B.; Inocente, E.A.; Tian, J.; Hoekstra, N.C.; Piermarini, P.M.; Gardiner, M.M. Can Urban Greening Increase Vector Abundance in Cities? The Impact of Mowing, Local Vegetation, and Landscape Composition on Adult Mosquito Populations. Urban Ecosyst. 2019, 22, 827–839. [Google Scholar] [CrossRef]
- Burkett-Cadena, N.D.; McClure, C.J.W.; Estep, L.K.; Eubanks, M.D. Hosts or Habitats: What Drives the Spatial Distribution of Mosquitoes? Ecosphere 2013, 4, 30. [Google Scholar] [CrossRef]
- Faraji, A.; Egizi, A.; Fonseca, D.M.; Unlu, I.; Crepeau, T.; Healy, S.P.; Gaugler, R. Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes Albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Negl. Trop. Dis. 2014, 8, e3037. [Google Scholar] [CrossRef] [Green Version]
- Fader, J.E. The Importance of Interspecific Interactions on the Present Range of the Invasive Mosquito Aedes Albopictus (Diptera: Culicidae) and Persistence of Resident Container Species in the United States. J. Med. Entomol. 2016, 53, 992–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliano, S.A.; Westby, K.M.; Ower, G.D. Know Your Enemy: Effects of a Predator on Native and Invasive Container Mosquitoes. J. Med. Entomol. 2019, 56, 320–328. [Google Scholar] [CrossRef]
- Lounibos, L.P.; O’Meara, G.F.; Juliano, S.A.; Nishimura, N.; Escher, R.L.; Reiskind, M.H.; Cutwa, M.; Greene, K. Differential Survivorship of Invasive Mosquito Species in South Florida Cemeteries: Do Site-Specific Microclimates Explain Patterns of Coexistence and Exclusion? Ann. Entomol. Soc. Am. 2010, 103, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Murdock, C.C.; Evans, M.V.; McClanahan, T.D.; Miazgowicz, K.L.; Tesla, B. Fine-Scale Variation in Microclimate across an Urban Landscape Shapes Variation in Mosquito Population Dynamics and the Potential of Aedes Albopictus to Transmit Arboviral Disease. PLoS Negl. Trop. Dis. 2017, 11, e0005640. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.V.; Hintz, C.W.; Jones, L.; Shiau, J.; Solano, N.; Drake, J.M.; Murdock, C.C. Microclimate and Larval Habitat Density Predict Adult Aedes Albopictus Abundance in Urban Areas. Am. J. Trop. Med. Hyg. 2019, 101, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Wilke, A.B.B.; Vasquez, C.; Carvajal, A.; Medina, J.; Chase, C.; Cardenas, G.; Mutebi, J.-P.; Petrie, W.D.; Beier, J.C. Proliferation of Aedes Aegypti in Urban Environments Mediated by the Availability of Key Aquatic Habitats. Sci. Rep. 2020, 10, 12925. [Google Scholar] [CrossRef]
- Krol, L.; Gorsich, E.E.; Hunting, E.R.; Govender, D.; van Bodegom, P.M.; Schrama, M. Eutrophication Governs Predator-Prey Interactions and Temperature Effects in Aedes Aegypti Populations. Parasites Vectors 2019, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Sousa, A.R.; de Oliveira-Christe, R.; Camargo, A.A.; Scinachi, C.A.; Milani, G.M.; Urbinatti, P.R.; Natal, D.; Ceretti-Junior, W.; Marrelli, M.T. Influence of Water’s Physical and Chemical Parameters on Mosquito (Diptera: Culicidae) Assemblages in Larval Habitats in Urban Parks of São Paulo, Brazil. Acta Trop. 2020, 205, 105394. [Google Scholar] [CrossRef] [PubMed]
- Kinga, H.; Kengne-Ouafo, J.A.; King, S.A.; Egyirifa, R.K.; Aboagye-Antwi, F.; Akorli, J. Water Physicochemical Parameters and Microbial Composition Distinguish Anopheles and Culex Mosquito Breeding Sites: Potential as Ecological Markers for Larval Source Surveillance. J. Med. Entomol. 2022, 59, 1817–1826. [Google Scholar] [CrossRef]
- Jones, R.; Kulkarni, M.A.; Davidson, T.M.V.; RADAM-LAC Research Team; Talbot, B. Arbovirus Vectors of Epidemiological Concern in the Americas: A Scoping Review of Entomological Studies on Zika, Dengue and Chikungunya Virus Vectors. PLoS ONE 2020, 15, e0220753. [Google Scholar] [CrossRef]
- Carvalho, F.D.; Moreira, L.A. Why Is Aedes Aegypti Linnaeus so Successful as a Species? Neotrop. Entomol. 2017, 46, 243–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, M.; Kenawy, M.A.; Rady, M.H.; Khaled, A.S.; Samy, A.M. Mapping the Global Potential Distributions of Two Arboviral Vectors Aedes Aegypti and Ae. Albopictus under Changing Climate. PLoS ONE 2018, 13, e0210122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotsakiozi, P.; Gloria-Soria, A.; Caccone, A.; Evans, B.; Schama, R.; Martins, A.J.; Powell, J.R. Tracking the Return of Aedes Aegypti to Brazil, the Major Vector of the Dengue, Chikungunya and Zika Viruses. PLoS Negl. Trop. Dis. 2017, 11, e0005653. [Google Scholar] [CrossRef] [Green Version]
- Braks, M.A.H.; Honório, N.A.; Lourençqo-De-Oliveira, R.; Juliano, S.A.; Lounibos, L.P. Convergent Habitat Segregation of Aedes Aegypti and Aedes Albopictus (Diptera: Culicidae) in Southeastern Brazil and Florida. J. Med. Entomol. 2003, 40, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Benitez, E.M.; Ludueña-Almeida, F.; Frías-Céspedes, M.; Almirón, W.R.; Estallo, E.L. Could Land Cover Influence Aedes Aegypti Mosquito Populations? Med. Vet. Entomol. 2019, 34, 138–144. [Google Scholar] [CrossRef]
- Leisnham, P.T.; LaDeau, S.L.; Juliano, S.A. Spatial and Temporal Habitat Segregation of Mosquitoes in Urban Florida. PLoS ONE 2014, 9, e91655. [Google Scholar] [CrossRef] [Green Version]
- Hopperstad, K.A.; Sallam, M.F.; Reiskind, M.H. Estimations of Fine-Scale Species Distributions of Aedes Aegypti and Aedes Albopictus (Diptera: Culicidae) in Eastern Florida. J. Med. Entomol. 2021, 58, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Fikrig, K.; Harrington, L.C. Understanding and Interpreting Mosquito Blood Feeding Studies: The Case of Aedes Albopictus. Trends Parasitol. 2021, 37, 959–975. [Google Scholar] [CrossRef]
- Brady, O.J.; Hay, S.I. The Global Expansion of Dengue: How Aedes Aegypti Mosquitoes Enabled the First Pandemic Arbovirus. Annu. Rev. Entomol. 2020, 65, 191–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.d.A.; Santos, F.B.D.; Vazeille, M.; Vasconcelos, P.F.d.C.; Lourenço-de-Oliveira, R.; Failloux, A.-B. Potential Risk of Re-Emergence of Urban Transmission of Yellow Fever Virus in Brazil Facilitated by Competent Aedes Populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-de-Lima, V.H.; Câmara, D.C.P.; Honório, N.A.; Lima-Camara, T.N. The Asian Tiger Mosquito in Brazil: Observations on Biology and Ecological Interactions since Its First Detection in 1986. Acta Trop. 2020, 205, 105386. [Google Scholar] [CrossRef]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes Albopictus, an Arbovirus Vector: From the Darkness to the Light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Delisle, E.; Rousseau, C.; Broche, B.; Leparc-Goffart, I.; L’Ambert, G.; Cochet, A.; Prat, C.; Foulongne, V.; Ferre, J.B.; Catelinois, O.; et al. Chikungunya Outbreak in Montpellier, France, September to October 2014. Eurosurveillance 2015, 20, 21108. [Google Scholar] [CrossRef] [Green Version]
- Paupy, C.; Kassa Kassa, F.; Caron, M.; Nkoghé, D.; Leroy, E.M. A Chikungunya Outbreak Associated with the Vector Aedes Albopictus in Remote Villages of Gabon. Vector-Borne Zoonotic Dis. 2012, 12, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Brady, O.J.; Hay, S.I. The First Local Cases of Zika Virus in Europe. Lancet 2019, 394, 1991–1992. [Google Scholar] [CrossRef] [Green Version]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging Arboviruses: Why Today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Ricas Rezende, H.; Malta Romano, C.; Morales Claro, I.; Santos Caleiro, G.; Cerdeira Sabino, E.; Felix, A.C.; Bissoli, J.; Hill, S.; Rodrigues Faria, N.; Cardoso da Silva, T.C.; et al. First Report of Aedes Albopictus Infected by Dengue and Zika Virus in a Rural Outbreak in Brazil. PLoS ONE 2020, 15, e0229847. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Dos-Santos, T.; Roiz, D.; Lourenço-de-Oliveira, R.; Paupy, C. A Systematic Review: Is Aedes Albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? Pathogens 2020, 9, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-Dos-Santos, T.; Roiz, D.; Abreu, F.V.S.; Luz, S.L.B.; Santalucia, M.; Jiolle, D.; Santos Neves, M.S.A.; Simard, F.; Lourenço-de-Oliveira, R.; Paupy, C. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerg. Microbes Infect. 2018, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Eliason, D.A. A Preferred Oviposition Site as a Surveillance Method for Aedes Aegypti. Mosq. News 1966, 26, 531–535. [Google Scholar]
- World Health Organization. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Yanoviak, S.P.; Fincke, O.M. Sampling Methods for Water-Filled Tree Holes and Their Artificial Analogues. In Insect Sampling in Forest Ecosystems; Leather, S.R., Ed.; Blackwell Science Ltd.: Oxford, UK, 2005; pp. 168–185. ISBN 978047075051348. [Google Scholar]
- Perfecto, I.; Vandermeer, J. Biodiversity Conservation in Tropical Agroecosystems: A New Conservation Paradigm. Ann. N. Y. Acad. Sci. 2008, 1134, 173–200. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Benelli, G.; Beier, J.C. Anthropogenic Changes and Associated Impacts on Vector-Borne Diseases. Trends Parasitol. 2021, 37, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Souza, D.; Oliveira, F.G.; de Castro, I.L.; de Souza Soares, J.B.; Reis, M.M.; de Figueiredo, F.P. Frequência de ocorrência de precipitação pluviométrica em Montes Claros-MG. Agrarian 2018, 11, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Petermann, J.S.; Gossner, M.M. Aquatic Islands in the Sky: 100 Years of Research on Water-Filled Tree Holes. Ecol. Evol. 2022, 12, e9206. [Google Scholar] [CrossRef]
- Ptatscheck, C.; Traunspurger, W. Meio- and Macrofaunal Communities in Artificial Water-Filled Tree Holes: Effects of Seasonality, Physical and Chemical Parameters, and Availability of Food Resources. PLoS ONE 2015, 10, e0133447. [Google Scholar] [CrossRef]
- Bennett, K.L.; McMillan, W.O.; Enríquez, V.; Barraza, E.; Díaz, M.; Baca, B.; Whiteman, A.; Cerro Medina, J.; Ducasa, M.; Gómez Martínez, C.; et al. The Role of Heterogenous Environmental Conditions in Shaping the Spatiotemporal Distribution of Competing Aedes Mosquitoes in Panama: Implications for the Landscape of Arboviral Disease Transmission. Biol. Invasions 2021, 23, 1933–1948. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.F.; Friberg, M.D. Aedes Albopictus and Aedes Flavopictus (Diptera: Culicidae) Pre-Imaginal Abundance Patterns Are Associated with Different Environmental Factors along an Altitudinal Gradient. Curr. Res. Insect Sci. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Honório, N.A.; Castro, M.G.; Barros, F.S.M.d.; Magalhães, M.d.A.F.M.; Sabroza, P.C. The Spatial Distribution of Aedes Aegypti and Aedes Albopictus in a Transition Zone, Rio de Janeiro, Brazil. Cad. Saúde Pública 2009, 25, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Fikrig, K.; Rose, N.; Burkett-Cadena, N.; Kamgang, B.; Leisnham, P.T.; Mangan, J.; Ponlawat, A.; Rothman, S.E.; Stenn, T.; McBride, C.S.; et al. Aedes Albopictus Host Odor Preference Does Not Drive Observed Variation in Feeding Patterns across Field Populations. Sci. Rep. 2023, 13, 130. [Google Scholar] [CrossRef]
- Mendenhall, I.H.; Manuel, M.; Moorthy, M.; Lee, T.T.M.; Low, D.H.W.; Missé, D.; Gubler, D.J.; Ellis, B.R.; Ooi, E.E.; Pompon, J. Peridomestic Aedes Malayensis and Aedes Albopictus Are Capable Vectors of Arboviruses in Cities. PLoS Negl. Trop. Dis. 2017, 11, e0005667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lounibos, L.P.; Kramer, L.D. Invasiveness of Aedes Aegypti and Aedes Albopictus and Vectorial Capacity for Chikungunya Virus. J. Infect. Dis. 2016, 214, S453–S458. [Google Scholar] [CrossRef] [Green Version]
- Montagner, F.R.G.; Silva, O.S.; Jahnke, S.M. Mosquito Species Occurrence in Association with Landscape Composition in Green Urban Areas. Braz. J. Biol. 2018, 78, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Hendy, A.; Hernandez-Acosta, E.; Chaves, B.A.; Fé, N.F.; Valério, D.; Mendonça, C.; Lacerda, M.V.G.d.; Buenemann, M.; Vasilakis, N.; Hanley, K.A. Into the Woods: Changes in Mosquito Community Composition and Presence of Key Vectors at Increasing Distances from the Urban Edge in Urban Forest Parks in Manaus, Brazil. Acta Trop. 2020, 206, 105441. [Google Scholar] [CrossRef]
- Soghigian, J.; Andreadis, T.G.; Livdahl, T.P. From Ground Pools to Treeholes: Convergent Evolution of Habitat and Phenotype in Aedes Mosquitoes. BMC Evol. Biol. 2017, 17, 262. [Google Scholar] [CrossRef]
- Viana, D.V.; Ignotti, E. The Ocurrence of Dengue and Weather Changes in Brazil: A Systematic Review. Rev. Bras. Epidemiol. 2013, 16, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Valdez, L.D.; Sibona, G.J.; Condat, C.A. Impact of Rainfall on Aedes Aegypti Populations. Ecol. Model. 2018, 385, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C. Impacts of Biotic and Abiotic Parameters on Immature Populations of Aedes Aegypti. J. Pest Sci. 2020, 93, 941–952. [Google Scholar] [CrossRef]
- Soares, F.A.; Silva, J.C.; Oliveira, J.B.B.S.; Abreu, F.V.S. Study of oviposition behavior of Aedes aegypti in two neighborhoods under the influence of semi-arid climate in the municipality of Salinas, State of Minas Gerais, Brazil. Rev. Patol. Trop. 2015, 44, 77–88. [Google Scholar]
- Madeira, N.G.; Macharelli, C.A.; Carvalho, L.R. Variation of the oviposition preferences of Aedes aegypti in function of substratum and humidity. Memórias Inst. Oswaldo Cruz 2002, 97, 415–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schick, R.X. Mosquito Studies (Diptera, Culicidae) XX. The Terrens Group of Aedes (Finlaya). Contrib. Am. Entomol. Inst. 1970, 5, 1–158. [Google Scholar]
- Lourenço-de-Oliveira, R.; Failloux, A.-B. High Risk for Chikungunya Virus to Initiate an Enzootic Sylvatic Cycle in the Tropical Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005698. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.O.F.; de Mello, C.F.; Julião, G.R.; Dias, R.; Alencar, J. Sexual Proportion and Egg Hatching of Vector Mosquitos in an Atlantic Forest Fragment in Rio de Janeiro, Brazil. Life 2022, 13, 13. [Google Scholar] [CrossRef]
- Trimble, R.M. Laboratory Observations on Oviposition by the Predaceous Tree-Hole Mosquito, Toxorhynchites Rutilus Septentrionalis (Diptera: Culicidae). Can. J. Zool. 1979, 57, 1104–1108. [Google Scholar] [CrossRef]
- Donald, C.L.; Siriyasatien, P.; Kohl, A. Toxorhynchites Species: A Review of Current Knowledge. Insects 2020, 11, 747. [Google Scholar] [CrossRef]
- Focks, D.A.; Sackett, S.R.; Dame, D.A.; Bailey, D.L. Ability of Toxorhynchites Amboinensis (Doleschall) (Diptera: Culicidae) to Locate and Oviposit in Artificial Containers in an Urban Environment. Environ. Entomol. 1983, 12, 1073–1077. [Google Scholar] [CrossRef]
- Focks, D.A. Toxorhynchites as Biocontrol Agents. J. Am. Mosq. Control. Assoc. 2007, 23, 118–127. [Google Scholar] [CrossRef]
- Lounibos, L.P. Invasions by Insect Vectors of Human Disease. Annu. Rev. Entomol. 2002, 47, 233–266. [Google Scholar] [CrossRef]
- Giunti, G.; Becker, N.; Benelli, G. Invasive Mosquito Vectors in Europe: From Bioecology to Surveillance and Management. Acta Trop. 2023, 239, 106832. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The Invasive Mosquito Species Aedes Albopictus: Current Knowledge and Future Perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, V.; Agostini, V.; Moroni, E.; Colombo, G.; Lombardo, G.; Rambaldi Migliore, N.; Gabrieli, P.; Garofalo, M.; Gagliardi, S.; Gomulski, L.M.; et al. The Worldwide Spread of Aedes Albopictus: New Insights from Mitogenomes. Front. Genet. 2022, 13, 931163. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the Tiger: Global Risk of Invasion by the Mosquito Aedes Albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lwande, O.W.; Obanda, V.; Lindström, A.; Ahlm, C.; Evander, M.; Näslund, J.; Bucht, G. Globe-Trotting Aedes Aegypti and Aedes Albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis. 2020, 20, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, R.G.; Lourenço-de-Oliveira, R.; Braga, I.A. Updating the Geographical Distribution and Frequency of Aedes Albopictus in Brazil with Remarks Regarding Its Range in the Americas. Memórias Inst. Oswaldo Cruz 2014, 109, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Lounibos, L.P.; Juliano, S.A. Where Vectors Collide: The Importance of Mechanisms Shaping the Realized Niche for Modeling Ranges of Invasive Aedes Mosquitoes. Biol. Invasions 2018, 20, 1913–1929. [Google Scholar] [CrossRef]
- Leisnham, P.T.; LaDeau, S.L.; Saunders, M.E.M.; Villena, O.C. Condition-Specific Competitive Effects of the Invasive Mosquito Aedes Albopictus on the Resident Culex Pipiens among Different Urban Container Habitats May Explain Their Coexistence in the Field. Insects 2021, 12, 993. [Google Scholar] [CrossRef]
- de Oliveira Ribeiro, G.; da Costa, A.C.; Gill, D.E.; Ribeiro, E.S.D.; da S. Rego, M.O.; Monteiro, F.J.C.; Villanova, F.; Nogueira, J.S.; Maeda, A.Y.; de Souza, R.P.; et al. Guapiaçu Virus, a New Insect-Specific Flavivirus Isolated from Two Species of Aedes Mosquitoes from Brazil. Sci. Rep. 2021, 11, 4674. [Google Scholar] [CrossRef] [PubMed]
Species | 2019–2020 | 2020–2021 | ||||
---|---|---|---|---|---|---|
Dry Forest | Pasture | Riparian Forest | Dry Forest | Pasture | Riparian Forest | |
Aedes albopictus (Skuse, 1984) | 428 (85.3%) | 533 (83.2%) | 240 (70.3%) | 240 (55.7%) | 253 (46.9%) | 69 (29.4%) |
Aedes aegypti (Linneaus, 1762) | 35 (6.9%) | 102 (15.9%) | 87 (25.5%) | 65 (15.08%) | 137 (25.4%) | 17 (7.3%) |
Aedes terrens (Walker, 1856) | 28 (5.6%) | 0 | 3 (0.87%) | 117 (27.2%) | 141 (26.2%) | 133 (56.5%) |
Toxorhynchites theobaldi (Dyar and Knab, 1906) | 11 (2.2%) | 6 (0.9%) | 10 (2.93%) | 9 (2.08%) | 8 (1.5%) | 11(4.7%) |
Haemagogus spegazzini (Brethes, 1912) | 0 | 0 | 1 (0.3%) | 0 | 0 | 1(0.4%) |
Haemagogus janthinomys (Dyar 1921) | 0 | 0 | 0 | 0 | 0 | 3 (1.3%) |
Haemagogus leucocelaenus (Dyar, 1925) | 0 | 0 | 0 | 0 | 0 | 1 (0.4%) |
Total | 502 (33.8%) | 641 (43.1%) | 341 (22.9%) | 431 | 539 | 235 |
1484 | 1205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa-Silva, H.; Cardoso, J.G.; Reis-Júnior, R.; Corgosinho, P.H.C.; Faria, M.L.; Ribeiro, S.P.; Abreu, F.V.S.; Cuevas-Reyes, P.; Borges, M.A.Z. Coexistence and Spatial Distribution of Invasive and Sylvatic Container-Breeding Mosquitoes in City–Forest Ecotone within the Brazilian Semi-arid. Diversity 2023, 15, 822. https://doi.org/10.3390/d15070822
Rosa-Silva H, Cardoso JG, Reis-Júnior R, Corgosinho PHC, Faria ML, Ribeiro SP, Abreu FVS, Cuevas-Reyes P, Borges MAZ. Coexistence and Spatial Distribution of Invasive and Sylvatic Container-Breeding Mosquitoes in City–Forest Ecotone within the Brazilian Semi-arid. Diversity. 2023; 15(7):822. https://doi.org/10.3390/d15070822
Chicago/Turabian StyleRosa-Silva, Hosana, Julia G. Cardoso, Ronaldo Reis-Júnior, Paulo H. C. Corgosinho, Maurício L. Faria, Sérvio P. Ribeiro, Filipe V. S. Abreu, Pablo Cuevas-Reyes, and Magno A. Z. Borges. 2023. "Coexistence and Spatial Distribution of Invasive and Sylvatic Container-Breeding Mosquitoes in City–Forest Ecotone within the Brazilian Semi-arid" Diversity 15, no. 7: 822. https://doi.org/10.3390/d15070822
APA StyleRosa-Silva, H., Cardoso, J. G., Reis-Júnior, R., Corgosinho, P. H. C., Faria, M. L., Ribeiro, S. P., Abreu, F. V. S., Cuevas-Reyes, P., & Borges, M. A. Z. (2023). Coexistence and Spatial Distribution of Invasive and Sylvatic Container-Breeding Mosquitoes in City–Forest Ecotone within the Brazilian Semi-arid. Diversity, 15(7), 822. https://doi.org/10.3390/d15070822