Branching Lithophyllum Coralline Algae: Dominant Reef Builders on Herbivory-Depressed Tropical Reefs after High Coral Mortality
Abstract
:Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Littler, M.M.; Littler, D.S. Models of tropical reef biogenesis: The contribution of algae. In Progress in Pycological Research; Round, F.E., Ed.; Biopress: Bristol, UK, 1984; Volume 3, pp. 323–364. [Google Scholar]
- Steneck, R.S. Adaptions of crustose coralline algae to herbivory: Patterns in space and time. In Paleoalgology: Contemporary Research and Applications; Toomey, D.F., Nitecki, M.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 352–366. [Google Scholar]
- Raymundo, L.J.; Burdick, D.; Hoot, W.C.; Miller, R.M.; Brown, V.; Reynolds, T.; Gault, J.; Idechong, J.; Fifer, J.; Williams, A. Successive bleaching events cause mass coral mortality in Guam, Micronesia. Coral Reefs 2019, 38, 677–700. [Google Scholar] [CrossRef]
- Mills, M.S.; Ungermann, M.; Rigot, G.; den Haan, J.; Leon, J.X.; Schils, T. Rapid transitions in community composition on tropical Pacific reefs as evidenced by traditional surveys and hyperspectral imaging. PLoS ONE, 2023; submitted. [Google Scholar]
- MacNeil, M.A.; Graham, N.A.J.; Cinner, J.E.; Wilson, S.K.; Williams, I.D.; Maina, J.; Newman, S.; Friedlander, A.M.; Jupiter, S.; Polunin, N.V.C.; et al. Recovery potential of the world’s coral reef fishes. Nature 2015, 520, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.M.; Duenas, A.E.K.; Lange, I.D. Decadal changes in parrotfish assemblages around reefs of Guam, Micronesia. Coral Reefs 2022, 41, 1693–1703. [Google Scholar] [CrossRef]
- Gove, J.M.; Williams, G.J.; Lecky, J.; Brown, E.; Conklin, E.; Counsell, C.; Davis, G.; Donovan, M.K.; Falinski, K.; Kramer, L.; et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 2023, 596, 1–7. [Google Scholar] [CrossRef]
- Perry, C.T.; Spencer, T.; Kench, P.S. Carbonate budgets and reef production states: A geomorphic perspective on the ecological phase-shift concept. Coral Reefs 2008, 27, 853–866. [Google Scholar] [CrossRef]
- Johnson, J.H. Fossil and recent calcareous algae from Guam. U.S. Geol. Surv. Prof. Paper 1964, 403-G, 76. [Google Scholar]
- Cornwall, C.E.; Carlot, J.; Branson, O.; Courtney, T.A.; Harvey, B.P.; Perry, C.T.; Andersson, A.J.; Diaz-Pulido, G.; Johnson, M.D.; Kennedy, E.; et al. Crustose coralline algae can contribute more than corals to coral reef carbonate production. Commun. Earth Environ. 2023, 4, 105. [Google Scholar] [CrossRef]
- Lange, I.D.; Perry, C.T.; Alvarez-Filip, L. Carbonate budgets as indicators of functional reef “health”: A critical review of data underpinning census-based methods and current knowledge gaps. Ecol. Indic. 2020, 110, 105857. [Google Scholar] [CrossRef]
- Montaggioni, L.F.; Braithwaite, C.J.R. Quaternary coral reef systems: History, development processes and controlling factors. Dev. Mar. Geol. 2009, 5, 532. [Google Scholar]
- Aguirre, J.; Riding, R.; Braga, J.C. Diversity of coralline red algae: Origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiology 2000, 26, 651–667. [Google Scholar] [CrossRef]
- Mills, M.S.; Deinhart, M.E.; Heagy, M.N.; Schils, T. Small tropical islands as hotspots of crustose calcifying red algal diversity and endemism. Front. Mar. Sci. 2022, 9, 898308. [Google Scholar] [CrossRef]
- Dean, A.J.; Steneck, R.S.; Tager, D.; Pandolfi, J.M. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 2015, 34, 581–594. [Google Scholar] [CrossRef]
- Schils, T. 2012. Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats. PLoS ONE 2012, 7, e46639. [Google Scholar] [CrossRef] [PubMed]
- Crisp, S.K.; Tebbett, S.B.; Bellwood, D.R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 2022, 178, 105667. [Google Scholar] [CrossRef] [PubMed]
- Deinhart, M.; Mills, M.S.; Schils, T. Community assessment of crustose calcifying red algae as coral recruitment substrates. PLoS ONE 2022, 17, e0271438. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schils, T. Branching Lithophyllum Coralline Algae: Dominant Reef Builders on Herbivory-Depressed Tropical Reefs after High Coral Mortality. Diversity 2023, 15, 1025. https://doi.org/10.3390/d15091025
Schils T. Branching Lithophyllum Coralline Algae: Dominant Reef Builders on Herbivory-Depressed Tropical Reefs after High Coral Mortality. Diversity. 2023; 15(9):1025. https://doi.org/10.3390/d15091025
Chicago/Turabian StyleSchils, Tom. 2023. "Branching Lithophyllum Coralline Algae: Dominant Reef Builders on Herbivory-Depressed Tropical Reefs after High Coral Mortality" Diversity 15, no. 9: 1025. https://doi.org/10.3390/d15091025
APA StyleSchils, T. (2023). Branching Lithophyllum Coralline Algae: Dominant Reef Builders on Herbivory-Depressed Tropical Reefs after High Coral Mortality. Diversity, 15(9), 1025. https://doi.org/10.3390/d15091025