The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Habitat and Sampling of N. singapureana
2.2. Internal Transcribed Spacer (ITS) Sequencing and Operational Taxonomic Unit (OTU) Analysis
2.3. Isolation and Identification of Culturable Endophytic Fungi
2.4. Symbiotic Germination of Orchid Seeds and Fungal Isolates
3. Results
3.1. Endophytic Fungal Diversity
3.2. OM Fungal Communities in Different Sample Groups
3.3. Culturable Endophytic Fungal from Rhizomes
3.4. Promotion of Symbiotic Seed Germination by Fungal Isolates In Vitro
4. Discussion
4.1. Endophytic Fungal Diversity
4.2. Growth-Promoting Function of OMF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dearnaley, J.D.W.; Martos, F.; Selosse, M.A. 12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In Fungal Associations, 2nd ed.; Hock, B., Ed.; Springer: Berlin, Germany, 2012; pp. 207–230. [Google Scholar]
- Zettler, L.W.; Corey, L.L. Orchid Mycorrhizal fungi: Isolation and Identification Techniques. In Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols; Springer: Berlin, Germany, 2018; pp. 27–59. [Google Scholar]
- Chen, Y.; Gao, Y.; Song, L.; Zhao, Z.; Guo, S.; Xing, X. Mycorrhizal fungal community composition in seven orchid species inhabiting Song Mountain, Beijing, China. Sci. China Life Sci. 2019, 62, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, W.; Wu, S.; Selosse, M.A.; Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 2021, 12, 646325. [Google Scholar] [CrossRef]
- Kohout, P.; Těšitelová, T.; Roy, M.; Vohník, M.; Jersáková, J. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol. 2013, 6, 50–64. [Google Scholar] [CrossRef]
- Wilson, D. Endophyte: The evolution of a term, and clarification. Oikos 1995, 73, 274–276. [Google Scholar] [CrossRef]
- Addy, H.D.; Piercey, M.M.; Currah, R.S. Microfungal endophytes in roots. Canadian J. Bot. 2005, 83, 1–13. [Google Scholar] [CrossRef]
- Bayman, P.; Otero, J.T. Microbial Endophytes of Orchid Roots. In Microbial Root Endophytes; Schulz, B.J.E., Boyle, C., Sieber, T.N., Eds.; Springer: Berlin, Germany, 2006; pp. 153–178. [Google Scholar]
- Yagame, T.; Orihara, T.; Selosse, M.A.; Yamato, M.; Iwase, K. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza forming Ceratobasidiaceae fungi. New Phytol. 2012, 193, 178–187. [Google Scholar] [CrossRef]
- Cowden, C.C.; Shefferson, R.P. Diversity of root-associated fungi of mature Habenaria radiata and Epipactis thunbergii colonizing manmade wetlands in Hiroshima Prefecture, Japan. Mycoscience 2013, 54, 327–334. [Google Scholar] [CrossRef]
- Novotna, A.; Benítez, A.; Herrera, P.; Cruz, D.; Filipczykova, D.; Suarez, J.P. High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience 2018, 59, 24–32. [Google Scholar] [CrossRef]
- Jumpponen, A. Non-Mycorrhizal Root Endophytese Aspects on Their Ecology. In Proceedings of the 7th International Mycological Congress, Oslo, Norway, 11 August 2002. [Google Scholar]
- Otero, J.T.; Ackerman, J.D.; Bayman, P. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Amer. J. Bot. 2002, 89, 1852–1858. [Google Scholar] [CrossRef]
- Ma, X.; Kang, J.; Nontachaiyapoom, S.; Wen, T.; Hyde, K.D. Non-mycorrhizal endophytic fungi from orchids. Curr. Sci. 2015, 109, 72–87. [Google Scholar]
- Yuan, Z.L.; Chen, Y.C.; Yang, Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): Estimation and characterization. World J. Microb. Biot. 2009, 25, 295–303. [Google Scholar] [CrossRef]
- Ke, H.L.; Song, X.Q.; Tan, Z.Q.; Liu, H.X.; Luo, Y.B. Endophytic fungi diversity in root of Doritis pulcherrima (Orchidaceae). Biodivers. Sci. 2007, 15, 456–462. [Google Scholar]
- Chen, J.; Meng, Z.X.; Xing, Y.M.; Guo, S.X. Isolation and Identification of Endophytic Fungi from Five Medicinal Plants Species of Orchidaceae. Chinese J. Pharm. 2017, 52, 267–271. [Google Scholar]
- Feng, X.X.; Chen, J.J.; Liu, F.; Hu, W.Z.; Lin, F.C.; Zhang, C.L. Diversity of non-mycorrhizal endophytic fungi from five epiphytic orchids from Xishuangbanna, China. Mycosystema 2019, 38, 1876–1885. [Google Scholar]
- Tang, Y.; Wang, Z.C.; Lu, M.; Jiang, Y.Y.; Li, Y.W.; Yang, X.H. Cladosporium fungi Were the Mycorrhizal fungi of Dendrobium officinale and Bletilla striata. In Proceedings of the Annual Conference of The Chinese Horticultural Society, Qingdao, China, 18 October 2018. [Google Scholar]
- Jiang, J.; Zhang, K.; Chen, S.; Nie, Q.; Zhou, S.; Chen, Q.; Zhou, J.; Zhen, X.; Li, X.; Zhen, T.; et al. Fusarium oxysporum KB-3 from Bletilla striata: An orchid mycorrhizal fungus. Mycorrhiza 2019, 29, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Mini-review plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Li, L.; Guo, S.X. Studies on antagonism of Trichoderma sp. against pathogenic fungus of Dendrobium nobile Lindl. Chin. Med. Biotechnol. 2017, 1, 35–39. [Google Scholar]
- Vujanovic, V.; St-Arnaud, M.; Barabé, D.; Thibeault, G. Viability testing of orchid seed and the promotion of colouration and germination. Ann. Bot. 2000, 86, 79–86. [Google Scholar] [CrossRef]
- Guo, S.X.; Fan, L.; Cao, W.Q.; Xu, J.T.; Xiao, P.G. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 1997, 89, 952–954. [Google Scholar] [CrossRef]
- Yokoya, K.; Zettler, L.W.; Kendon, J.P.; Bidartondo, M.I.; Stice, A.L.; Skarha, S.; Corey, L.L.; Knight, A.C.; Sarasan, V. Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar. Mycorrhiza 2015, 25, 611–6235. [Google Scholar] [CrossRef]
- Chen, X.Q. Discussion on the origin and early differentiation of Orchidaceae. J. System. Evol. 1982, 20, 1–22. [Google Scholar]
- Kocyan, A.; Qiu, Y.L.; Endress, P.K.; Conti, E. A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Syst. Evol. 2004, 247, 203–213. [Google Scholar] [CrossRef]
- Flora of China Editorial Committee. Flora of China; Science Press and Missouri Botanical Garden Press: Beijing, China, 2009; p. 25. [Google Scholar]
- Okada, H.; Kubo, S.; Mori, Y. Pollination system of Neuwiedia veratrifolia Blume (Orchidaceae, Apostasioideae) in the Malesian wet Tropics. Acta Phytotaxon. Geobot. 1996, 47, 173–181. [Google Scholar]
- Kocyan, A.; Endress, P.K. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Int. J. Plant Sci. 2001, 162, 847–867. [Google Scholar] [CrossRef]
- Stern, W.L.; Cheadle, V.I.; Thorsch, J. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Bot. J. Linn. Soc. 1993, 111, 411–455. [Google Scholar] [CrossRef]
- Chen, X.Q. Study on the Family Subfam. APOSTASIOIDEAE Rchb. from China. J. System. Evol. 1986, 24, 346–352. [Google Scholar]
- Judd, W.S.; Stern, W.L.; Cheadle, V.I. Phylogenetic position of Apostasia and Neuwiedia (Orchidaceae). Bot. J. Linn. Soc. 1993, 113, 87–94. [Google Scholar] [CrossRef]
- Larsen, K. Brief note on Neuwiedia singapureana in Thailand. Nat. Hist. Bull. Siam Soc. 1968, 22, 330–331. [Google Scholar]
- Jersakova, J.; Trávníček, P.; Kubatova, B.; Urfus, T.; Liu, Z.J.; Ponert, J.; Nargar, K.; Curn, V.; Leitch, I. Genome size variation in Orchidaceae subfamily Apostasioideae: Filling the phylogenetic gap. Bot. J. Linn. Soc. 2013, 172, 95–105. [Google Scholar] [CrossRef]
- Kristiansen, K.A.; Rasmussen, F.N.; Rasmussen, H.N. Seedlings of Neuwiedia (Orchidaceae subfamily Apostasioideae) have typical orchidaceous mycotrophic protocorms. Amer. J. Bot. 2001, 88, 956–959. [Google Scholar] [CrossRef]
- Kristiansen, K.A.; Freudenstein, J.V.; Rasmussen, F.N.; Rasmussen, H.N. Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol. Phylogenet. Evol. 2004, 33, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Jia, G. fastp: An ultra-fast all-in-one FASTQ preprocessor. bioRxiv 2018. bioRxiv:274100. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. App. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Kolde, R.; Kolde, M.R. Package ’Pheatmap’; R Package. Available online: https://cran.r-project.org/web/packages/pheatmap/index.html (accessed on 29 November 2023).
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.S., White, T.J., Eds.; Academic: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Tian, J.N.; Wang, T.; Li, L.B. Symbiosis established between orchid and Tulasnella spp. fungi. J. Nucl. Agric. Sci. 2017, 31, 876–883. [Google Scholar]
- Zettler, L.W.; Delaney, T.W.; Sunley, J.A. Seed propagation of the epiphytic green-fly orchid, Epidendrum conopseum R. Brown, using its epiphytic fungus. Selbyana 1998, 19, 249–253. [Google Scholar]
- Newsham, K.K. A meta-analysis of plant responses to dark septate root endophytes. New Phyol. 2011, 190, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Yang, J.Z.; Liu, S.; Chen, C.L.; Zhu, H.Y.; Cao, J.X. The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World J. Microb. Biot. 2014, 30, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.S.; Lv, Y.L.; Zhao, Y.; Guo, S.X. Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. J. Zhejiang Univ.-Sci. B 2013, 14, 785–792. [Google Scholar] [CrossRef]
- Sawmya, K.; Vasudevan, T.G.; Mural, T.S. Fungal endophytes from two orchid species-pointer towards organ specificity. Czech Mycol. 2013, 65, 89–101. [Google Scholar] [CrossRef]
- Masuhara, G.; Katsuya, K. In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol. 1994, 127, 711–718. [Google Scholar] [CrossRef]
- Deepthi, A.S.; Ray, J.G. Endophytic diversity of hanging velamen roots in the epiphytic orchid Acampepraemorsa. Plant Ecol. Divers. 2019, 11, 649–661. [Google Scholar] [CrossRef]
- Singh, D.K.; Sharma, V.K.; Kumar, J.; Mishra, A.; Verma, S.K. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linnf.: Spatiotemporal and tissue type effects. Sci. Rep. 2017, 7, 1–14. [Google Scholar]
- Illyés, Z.; Halász, K.; Rudnóy, S.; Ouanphanivanh, N.; Bratek, Z. Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J. Appl. Bot. Food Qual. 2009, 83, 28–36. [Google Scholar]
- Jacquemyn, H.; Duffy, K.J.; Selosse, M.A. Biogeography of Orchid mycorrhizas. In Biogeography of Mycorrhizal Symbiosis; Springer: Berlin, Germany, 2017; pp. 159–177. [Google Scholar]
- Waud, M.; Busschaert, P.; Ruyters, S.; Jacquemyn, H.; Lievens, B. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Mol. Ecol. Res. 2014, 14, 679–699. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, M.; Liao, Q.G.; Lü, F.B.; Zhao, X.L. Effects of inoculated mycorrhizal fungi and non-mycorrhizal beneficial microorganisms on plant traits, nutrient uptake and root-associated fungal community composition of the Cymbidium hybridum in greenhouse. J. Appl. Microbiol. 2021, 1, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Sathiyadash, K.; Muthukumar, T.; Murugan, S.B.; Sathishkumar, R.; Pandey, R.R. In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 2014, 55, 183–189. [Google Scholar] [CrossRef]
- Jin, H.; Xu, Z.X.; Chen, J.H.; Han, S.F.; Ge, S.; Luo, Y.B. Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin. J. Plant Ecol. 2009, 33, 433–441. [Google Scholar]
- Wang, Y.W.; Zou, H.; Dai, Y.M.; Lin, J.B. Effect of Epulorhiza sp.on root morphology of Dendrobium officinale and their symbiotic relationship. J. Trop Subtrop. Bot. 2020, 28, 124–130. [Google Scholar]
- Zhu, X.M.; Hu, H.; Li, S.Y.; Yan, N. Interaction between endophytic fungi and seedlings of two species of Paphiopedilum during symbiotic culture. Plant Divers. Resour. 2012, 34, 171–178. [Google Scholar] [CrossRef]
- Tian, F.; Liao, X.F.; Wang, L.H.; Bai, X.X.; Yang, Y.B.; Luo, Z.Q.; Yan, F.X. Isolation and identification of beneficial orchid mycorrhizal fungi in Paphiopedilum barbigerum (Orchidaceae). Plant Signal. Behav. 2022, 1, e2005882. [Google Scholar] [CrossRef]
- Li, B.; Tang, M.J.; Tang, K.; Zhao, L.F.; Guo, S.X. Screening of differentially expressed genes associated with mycorrhizal fungi in Anoectochilus roxburghii Orchidaceae. Sci. China Life Sci. 2012, 3, 218–225. [Google Scholar]
Sample ID | Total Clean Tags | Unique Tags | Taxon Tags | OTUs | Total OTUs |
---|---|---|---|---|---|
Neu-DF-1 | 65,930 | 15,807 | 52,159 | 584 | 890 |
Neu-DF-2 | 62,061 | 13,741 | 47,490 | 365 | |
Neu-DF-3 | 69,822 | 15,161 | 51,898 | 365 | |
Neu-JF-1 | 70,228 | 10,823 | 64,926 | 380 | 724 |
Neu-JF-2 | 71,261 | 14,196 | 53,733 | 401 | |
Neu-JF-3 | 71,661 | 15,041 | 45,758 | 465 | |
Neu-JA-1 | 72,147 | 22,521 | 54,120 | 790 | 1141 |
Neu-JA-2 | 62,355 | 21,768 | 47,549 | 795 | |
Neu-JA-3 | 70,931 | 14,580 | 54,053 | 424 | |
Neu-JR-1 | 69,980 | 15,857 | 47,969 | 444 | 789 |
Neu-JR-2 | 56,934 | 11,866 | 45,044 | 298 | |
Neu-JR-3 | 72,665 | 15,147 | 66,269 | 601 |
OTU | Family | Closest Match in GenBank | Description | Identity (%) | Sampling Group |
---|---|---|---|---|---|
OTU000006 | Ceratobasidiaceae | AJ318438.1 | Rhizoctonia sp. Bi8 | 99.63 | DF, JF, JR |
OTU000034 | Russulaceae | MF433036.1 | Russula pseudobubalina strain K15060707 | 99.65 | DF, JF, JR, JA |
OTU000036 | Ceratobasidiaceae | GU937737.1 | Ceratobasidium sp. F7 | 98.70 | DF, JF, JR, JA |
OTU000072 | Ceratobasidiaceae | GU937740.1 | Thanatephorus sp. G5 | 98.63 | DF, JF, JR, JA |
OTU000075 | Thelephoraceae | MK770303.1 | Uncultured Thelephoraceae clone 3RDZ | 98.43 | DF, JF, JR, JA |
OTU000096 | Ceratobasidiaceae | GU937737.1 | Ceratobasidium sp. F7 | 98.69 | DF, JF, JA |
OTU000157 | Ceratobasidiaceae | GU937737.1 | Ceratobasidium sp. F7 | 98.37 | JA |
OTU000236 | Thelephoraceae | MK770303.1 | Uncultured Thelephoraceae clone 3RDZ | 96.86 | JA |
OTU000313 | Ceratobasidiaceae | MG707439.1 | Uncultured Ceratobasidiaceae clone OTU-C1 | 92.60 | DF |
OTU000347 | Ceratobasidiaceae | KF823616.1 | Uncultured Ceratobasidium clone AEW1_04 | 91.43 | JF |
OTU000362 | Ceratobasidiaceae | MG707444.1 | Uncultured Ceratobasidiaceae clone OTU-C6 | 92.56 | DF |
OTU000513 | Russulaceae | EU819421.1 | Russula aeruginea voucher JMP0057 | 97.39 | DF, JF, JR, JA |
OTU000586 | Ceratobasidiaceae | KF267010.1 | Ceratobasidiaceae sp. CBS 570.83 | 94.25 | JF |
OTU000700 | Thelephoraceae | MK770317.1 | Uncultured Trechisporales clone 4RDN | 96.56 | JF, JR, JA |
OTU001323 | Thelephoraceae | KF359624.1 | Tomentella sp. 2 CC 14-01 | 97.81 | JA, JR |
OTU001489 | Russulaceae | KU886599.1 | Russula rubra voucher SAV:F-4216 | 96.83 | JF, JR, JA |
OTU001522 | Thelephoraceae | MK770310.1 | Uncultured Thelephoraceae clone 3RDD | 97.19 | JA |
OTU001568 | Thelephoraceae | EU668202.1 | Uncultured Tomentella isolate 7754.1.R | 96.24 | JA, JR |
OTU001629 | Cortinariaceae | KT875178.1 | Cortinarius cramesinus voucher PDD:107699 | 92.90 | DF, JR, JA |
OTU001729 | Ceratobasidiaceae | LC511146.1 | Uncultured Ceratobasidiaceae Cer5-M3402-CE7 | 97.03 | JA, JR |
OTU001891 | Ceratobasidiaceae | MK336472.1 | Ceratobasidium sp. strain Y. H. Yeh I0717 | 94.87 | DF |
OTU002091 | Serendipitaceae | DQ520096.1 | Sebacina vermifera AFTOL-ID 1877 | 96.95 | DF |
OTU002490 | Thelephoraceae | GU452529.1 | Uncultured Thelephora clone UBCOFE635Ar | 97.19 | JF, JR, JA |
OTU002572 | Russulaceae | MF433036.1 | Russula pseudobubalina strain K15060707 | 98.95 | JA, JR |
OTU002807 | Thelephoraceae | MK770275.1 | Uncultured Russula clone 1RNN | 96.56 | JA, JR |
OTU003491 | Ceratobasidiaceae | GU937740.1 | Thanatephorus sp. G5 | 97.95 | JA |
OTU003881 | Ceratobasidiaceae | GU937740.1 | Thanatephorus sp. G5 | 97.59 | JA |
OTU004335 | Thelephoraceae | MT678910.1 | Tomentella sp. isolate LL_50 | 90.55 | JF, JR |
OTU004340 | Ceratobasidiaceae | JF691537.1 | Uncultured Ceratobasidiaceae clone TP362.1 | 99.67 | JA |
OTU005158 | Tricholomataceae | MN906230.1 | Delicatula integrella voucher S.D. | 97.43 | DF, JR, JA |
OTU005219 | Ceratobasidiaceae | MH862733.1 | Rhizoctonia solani strain CBS 101382 | 91.62 | JF |
OTU005319 | Ceratobasidiaceae | LT988374.1 | Uncultured fungus genomic DNA sequence | 99.63 | JA |
OTU005780 | Ceratobasidiaceae | JQ926741.1 | Ceratobasidium sp. HBESXF | 90.35 | JF |
OTU006075 | Thelephoraceae | MK770310.1 | Uncultured Thelephoraceae clone 3RDD | 95.94 | JA |
OTU006421 | Russulaceae | KU886599.1 | Russula rubra voucher SAV:F-4216 | 96.82 | JR |
OTU006489 | Russulaceae | KU141303.1 | Uncultured Russula clone HS3-15 | 100.00 | DF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Chi, M.; Chen, J.; Liang, L.; Wang, Y.; Chen, Y. The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China. Diversity 2024, 16, 34. https://doi.org/10.3390/d16010034
Wang T, Chi M, Chen J, Liang L, Wang Y, Chen Y. The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China. Diversity. 2024; 16(1):34. https://doi.org/10.3390/d16010034
Chicago/Turabian StyleWang, Tao, Miao Chi, Jun Chen, Lixiong Liang, Yakun Wang, and Yan Chen. 2024. "The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China" Diversity 16, no. 1: 34. https://doi.org/10.3390/d16010034
APA StyleWang, T., Chi, M., Chen, J., Liang, L., Wang, Y., & Chen, Y. (2024). The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China. Diversity, 16(1), 34. https://doi.org/10.3390/d16010034