Experiments Reveal That Search Image Might Be Responsible for Seasonal Variation in Nest-Predation Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Artificial-Nest Experiments and Search Image
2.3. Predator Identification
2.4. Estimated Abundance of Natural Nests
2.5. Natural Nests
2.6. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkhead, T. The Most Perfect Thing. Inside (and Outside) a Bird’s Egg; Bloomsbury: London, UK, 2016; pp. 1–288. [Google Scholar]
- Lack, D. The Natural Regulation of Animal Numbers; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Skutch, A.F. A breeding bird census and nesting success in central America. IBIS 1966, 108, 1–16. [Google Scholar] [CrossRef]
- Ricklefs, R.E. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 1969, 9, 48. [Google Scholar] [CrossRef]
- Best, L.B.; Stauffer, D.F. Factors affecting nesting success in riparian bird communities. Condor 1980, 82, 149–158. [Google Scholar] [CrossRef]
- Hann, H.W. Life history of the oven-bird in southern Michigan. Wilson Bull. 1937, 49, 145–237. [Google Scholar]
- Zanette, L.; Jenkins, B. Nesting success and nest predators in forest fragments: A study using real and artificial nests. Auk 2000, 117, 445–454. [Google Scholar] [CrossRef]
- Pierce, A.J.; Sankamethawee, W.; Powell, L.A.; Gale, G.A. Patterns of nesting and nest success in an evergreen forest in southeast Asia. Emu-Austral Ornithol. 2020, 120, 46–55. [Google Scholar] [CrossRef]
- Robinson, S.K.; Thompson, F.R.; Donovan, T.M.; Whitehead, D.R.; Faaborg, J. Regional forest fragmentation and the nesting success of migratory birds. Science 1995, 267, 1987–1990. [Google Scholar] [CrossRef] [PubMed]
- Roodbergen, M.; van der Werf, B.; Hotker, H. Revealing the contributions of reproduction and survival to the europe-wide decline in meadow birds: Review and meta-analysis. J. Ornithol. 2012, 153, 53–74. [Google Scholar] [CrossRef]
- Slagsvold, T. Clutch size variation in passerine birds: The nest predation hypothesis. Oecologia 1982, 54, 159–169. [Google Scholar] [CrossRef]
- Stearns, S.C. Life-history tactics: A review of the ideas. Quaterly Rev. Biol. 1976, 51, 3–47. [Google Scholar] [CrossRef]
- Roos, S. Functional response, seasonal decline and landscape differences in nest predation risk. Oecologia 2002, 133, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.E. Avain life-history evolution in relation to nest sites, nest predation, and food. Ecol. Monogr. 1995, 65, 101–127. [Google Scholar] [CrossRef]
- Mönkkönen, M.; Forsman, J.T.; Kananoja, T.; Ylonen, H. Indirect cues of nest predation risk and avian reproductive decisions. Biol. Lett. 2009, 5, 176–178. [Google Scholar] [CrossRef]
- Perrins, C.M. Timing of birds’ breeding seasons. IBIS 1970, 112, 242–255. [Google Scholar] [CrossRef]
- Klomp, H. The determination of clutch-size in birds. A review. Ardea 1970, 58, 1–124. [Google Scholar] [CrossRef]
- Brown, W.P.; Roth, R.R. Temporal patterns of fitness and survival in the wood thrush. Ecology 2002, 83, 958–969. [Google Scholar] [CrossRef]
- Davis, S.K. Nest-site selection patterns and the influence of vegetation on nest survival of mixed-grass prairie passerines. Condor 2005, 107, 605–616. [Google Scholar] [CrossRef]
- Preston, K.L.; Rotenberry, J.T. Independent effects of food and predator-mediated processes on annual fecundity in a songbird. Ecology 2006, 87, 160–168. [Google Scholar] [CrossRef]
- Yahner, R.H.; Cypher, B.L. Effects of nest location on depredation of artificial arboreal nests. J. Wildl. Manag. 1987, 51, 178–181. [Google Scholar] [CrossRef]
- Kroll, A.J.; Haufler, J.B. Age and clutch size variation in dusky flycatcher nest survival. J. Ornithol. 2009, 150, 409–417. [Google Scholar] [CrossRef]
- Borgmann, K.L.; Conway, C.J.; Morrison, M.L. Breeding phenology of birds: Mechanisms underlying seasonal declines in the risk of nest predation. PLoS ONE 2013, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, K.L. Mechanisms Underlying Intra-Seasonal Variation in the Risk of Avian Nest Predation: Implications for Breeding Phenology. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2010; p. 161. [Google Scholar]
- Shustack, D.P.; Rodewald, A.D. Nest predation reduces benefits to early clutch initiation in northern cardinals Cardinalis cardinalis. J. Avian Biol. 2011, 42, 204–209. [Google Scholar] [CrossRef]
- Patnode, K.A.; White, D.H. Effects of habitat on avian productivity in abandoned pecan orchards in Southern Georgia. J. Field Ornithol. 1992, 63, 77–85. [Google Scholar]
- Vander Lee, B.A.; Lutz, R.S.; Hansen, L.A.; Mathews, N.E. Effects of supplemental prey, vegetation, and time on success of artificial nests. J. Wildl. Manag. 1999, 63, 1299–1305. [Google Scholar]
- Wiebe, K.L. Delayed timing as a strategy to avoid nest-site competition: Testing a model using data from starlings and flickers. Oikos 2003, 100, 291–298. [Google Scholar] [CrossRef]
- Nur, N.; Holmes, A.L.; Geupel, G.R. Use of survival time analysis to analyze nesting success in birds: An example using loggerhead shrikes. Condor 2004, 106, 457–471. [Google Scholar] [CrossRef]
- Grant, T.A.; Shaffer, T.L.; Madden, E.M.; Pietz, P.J. Time-specific variation in passerine nest survival: New insights into old questions. Auk 2005, 122, 661–672. [Google Scholar] [CrossRef]
- Müller, M.; Pasinelli, G.; Schiegg, K.; Spaar, R.; Jenni, L. Ecological and social effects on reproduction and local recruitment in the red-backed shrike. Oecologia 2005, 143, 37–50. [Google Scholar] [CrossRef]
- Schaub, R.; Mumme, R.L.; Woolfenden, G.E. Predation on the eggs and nestlings of Florida scrub jays. Auk 1992, 109, 585–593. [Google Scholar]
- Ludwig, M.; Schlinkert, H.; Holzschuh, A.; Fischer, C.; Scherber, C.; Trnka, A.; Tscharntke, T.; Batary, P. Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecol.-Int. J. Ecol. 2012, 45, 50–56. [Google Scholar] [CrossRef]
- Eguchi, K. Seasonal change in breeding success of the blackbilled magpie Pica pica sericea. Jpn. J. Ornithol. 1995, 44, 73–80. [Google Scholar] [CrossRef]
- Wilson, S.; Martin, K.; Hannon, S.J. Nest survival patterns in willow ptarmigan: Influence of time, nesting stage, and female characteristics. Condor 2007, 109, 377–388. [Google Scholar] [CrossRef]
- Husby, M.; Hoset, K. Seasonal variation in nest predation rates in boreal forests. J. Ornithol. 2018, 159, 975–984. [Google Scholar] [CrossRef]
- Cox, W.A.; Thompson, F.R.; Faaborg, J. Species and temporal factors affect predator-specific rates of nest predation for forest songbirds in the Midwest. Auk 2012, 129, 147–155. [Google Scholar] [CrossRef]
- Burhans, D.E.; Dearborn, D.; Thompson, F.R.; Faaborg, J. Factors affecting predation at songbird nests in old fields. J. Wildl. Manag. 2002, 66, 240–249. [Google Scholar] [CrossRef]
- Fenske-Crawford, T.J.; Niemi, G.J. Predation of artificial ground nests at two types of edges in a forest-dominated landscape. Condor 1997, 99, 14–24. [Google Scholar] [CrossRef]
- Rosoni, J.R.R.; Fontana, C.S.; Carlos, C.J. Timing of breeding as a determinant of nest success of the vulnerable chestnut seedeater (Sporophila cinnamomea) in grasslands of southern South America. Avian Res. 2023, 14, 10. [Google Scholar] [CrossRef]
- Nour, N.; Matthysen, E.; Dhondt, A.A. Artificial nest predation and habitat fragmentation: Different trends in bird and mammal predators. Ecography 1993, 16, 111–116. [Google Scholar] [CrossRef]
- Telleriá, J.L.; Santos, T. Spatiotemporal patterns of egg predation in forest islands: An experimental approach. Biol. Conserv. 1992, 62, 29–33. [Google Scholar] [CrossRef]
- Major, R.E.; Pyke, G.H.; Christy, M.T.; Gowing, G.; Hill, R.S. Can nest predation explain the timing of the breeding season and the pattern of nest dispersion of New Holland honeyeaters. Oikos 1994, 69, 364–372. [Google Scholar] [CrossRef]
- Yahner, R.H.; Morrell, T.E. Depredation of artificial avian nests in irrigated forests. Wilson Bull. 1991, 103, 113–117. [Google Scholar]
- Draycott, R.A.H.; Hoodless, A.N.; Woodburn, M.I.A.; Sage, R.B. Nest predation of common pheasants Phasianus colchicus. IBIS 2008, 150, 37–44. [Google Scholar] [CrossRef]
- Meilvang, D.; Moksnes, A.; Roskaft, E. Nest predation, nesting characteristics and nest defence behaviour of fieldfares and redwings. J. Avian Biol. 1997, 28, 331–337. [Google Scholar] [CrossRef]
- Noske, R.A.; Fischer, S.; Brook, B.W. Artificial nest predation rates vary among habitats in the Australian monsoon tropics. Ecol. Res. 2008, 23, 519–527. [Google Scholar] [CrossRef]
- Andrén, H.; Angelstam, P. Elevated predation rates as an edge effect in habitat islands: Experimental evidence. Ecology 1988, 69, 544–547. [Google Scholar] [CrossRef]
- Husby, M. Nestling begging calls increase predation risk by corvids. Anim. Biol. 2018, 69, 137–155. [Google Scholar] [CrossRef]
- Martin, T.E.; Scott, J.; Menge, C. Nest predation increases with parental activity: Separating nest site and parental activity effects. Proc. R. Soc. B Biol. Sci. 2000, 267, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.L.; Reynolds, S.J.; Bradbury, R.B. Birds as predators and as prey. IBIS 2008, 150, 1–8. [Google Scholar] [CrossRef]
- Martin, T.E. On the advantage of being different-nest predation and the coexistence of bird species. Proc. Natl. Acad. Sci. USA 1988, 85, 2196–2199. [Google Scholar] [CrossRef]
- Schiegg, K.; Eger, M.; Pasinelli, G. Nest predation in reed buntings Emberiza schoeniclus: An experimental study. IBIS 2007, 149, 365–373. [Google Scholar] [CrossRef]
- Gendron, R.P. Searching for cryptic prey: Evidence for optimal search rates and the formation of search images in quail. Anim. Behav. 1986, 34, 898–912. [Google Scholar] [CrossRef]
- Bond, A.B.; Kamil, A.C. Searching image in blue jays: Facilitation and interference in sequential priming. Anim. Learn. Behav. 1999, 27, 461–471. [Google Scholar] [CrossRef]
- Bond, A.B.; Kamil, A.C. Visual predators select for crypticity and polymorphism in virtual prey. Nature 2002, 415, 609–613. [Google Scholar] [CrossRef]
- Morgan, R.A.; Brown, J.S. Using giving-up densities to detect search images. Am. Nat. 1996, 148, 1059–1074. [Google Scholar] [CrossRef]
- Lawrence, E.S.; Allen, J.A. On the term search image. Oikos 1983, 40, 313–314. [Google Scholar] [CrossRef]
- Tinbergen, L. The natural control of insects in pine woods. I. Factors influencing the intensity of predation by songbirds. Arch. Neerl. Zool 1960, 13, 265–343. [Google Scholar] [CrossRef]
- Krebs, J.R. Behavioral aspects of predation. In Perspectives in Ethology; Bateson, P.P.G., Klopfer, P.H., Eds.; Plenum Press: New York, NY, USA, 1973; pp. 73–111. [Google Scholar]
- Tinbergen, N.; Impekoven, M.; Franck, D. An experiment on spacing-out as a defence against predation. Behaviour 1967, 28, 307–321. [Google Scholar] [CrossRef]
- Nams, V.O. Density-dependent predation by skunks using olfactory search images. Oecologia 1997, 110, 440–448. [Google Scholar] [CrossRef]
- Elmberg, J.; Folkesson, K.; Guillemain, M.; Gunnarsson, G. Putting density dependence in perspective: Nest density, nesting phenology, and biome, all matter to survival of simulated mallard Anas platyrhynchos nests. J. Avian Biol. 2009, 40, 317–326. [Google Scholar] [CrossRef]
- Lehtinen, S.O.; Perälä, T.A.; Uusi-Heikkilä, S.K.; Kuparinen, A.K. Mutually exclusive feeding yields Holling type III functional response. Funct. Ecol. 2024, 38, 403–416. [Google Scholar] [CrossRef]
- Krebs, J.R.; Davies, N.B. Behavioural Ecology. An Evolutionary Approach; Blackwell Publishing: Oxford, UK, 2003; pp. 1–456. [Google Scholar]
- Storaas, T. A comparison of losses in artificial and naturally-occurring capercaillie nests. J. Wildl. Manag. 1988, 52, 123–126. [Google Scholar] [CrossRef]
- Thompson, F.R.; Burhans, D.E. Differences in predators of artificial and real songbird nests: Evidence of bias in artificial nest studies. Conserv. Biol. 2004, 18, 373–380. [Google Scholar] [CrossRef]
- Major, R.E.; Kendal, C.E. The contribution of artificial nest experiments to understanding avian reproductive success: A review of methods and conclusions. IBIS 1996, 138, 298–307. [Google Scholar] [CrossRef]
- Burke, D.M.; Eliliott, K.; Moore, L.; Dunford, W.; Nol, E.; Phillips, J.; Holmes, S.; Freemark, K. Patterns of nest predation on artificial and natural nests in forests. [Patrones de depredación de nidos artificiales y naturales en bosques.]. Conserv. Biol. 2004, 18, 381–388. [Google Scholar] [CrossRef]
- Magrath, R.D.; Haff, T.M.; Horn, A.G.; Leonard, M.L. Calling in the face of danger: Predation risk and acoustic communication by parent birds and their offspring. In Advances in the Study of Behavior; Brockmann, H.J., Roper, T.J., Naguib, M., WynneEdwards, K.E., Mitani, J.C., Simmons, L.W., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2010; Volume 41, pp. 187–253. [Google Scholar]
- Mönkkönen, M.; Husby, M.; Tornberg, R.; Helle, P.; Thomson, R.L. Predation as a landscape effect: The trading off by prey species between predation risks and protection benefits. J. Anim. Ecol. 2007, 76, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.J.; Martel, M.; Markland, H.A.; Niklison, A.A.; Decker, K.L.; Martin, T.E. Testing ecological and behavioral correlates of nest predation. Oikos 2007, 116, 1887–1894. [Google Scholar] [CrossRef]
- Hoset, K.S.; Husby, M. Are predation rates comparable between natural and artificial open-cup tree nests in boreal forest landscapes? PLoS ONE 2019, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.E. Avian life-history evolution has an eminent past: Does it have a bright future? Auk 2004, 121, 289–301. [Google Scholar] [CrossRef]
- Fontaine, J.J.; Martin, T.E. Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol. Lett. 2006, 9, 428–434. [Google Scholar] [CrossRef]
- Decker, K.L.; Conway, C.J.; Fontaine, J.J. Nest predation, food, and female age explain seasonal declines in clutch size. Evol. Ecol. 2012, 26, 683–699. [Google Scholar] [CrossRef]
- Woodworth, B.K.; Wheelwright, N.T.; Newman, A.E.M.; Norris, D.R. Local density regulates migratory songbird reproductive success through effects on double-brooding and nest predation. Ecology 2017, 98, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Haftorn, S. Norges Fugler; Universitetsforlaget: Oslo, Norway, 1971. [Google Scholar]
- Sloan, S.S.; Holmes, R.T.; Sherry, T.W. Depredation rates and predators at artificial bird nests in an unfragmented northern hardwood forest. J. Wildl. Manag. 1998, 62, 529–539. [Google Scholar] [CrossRef]
- Collett, R. Norges Pattedyr; Aschehoug & Co.: Kristiania, Norway, 1911. [Google Scholar]
- Sørensen, O.J.; Moa, P.F.; Hagen, B.R.; Selås, V. Possible impact of winter conditions and summer temperature on bank vole (Myodes glareolus) population fluctuations in central norway. Ethol. Ecol. Evol. 2023, 35, 471–487. [Google Scholar] [CrossRef]
- Högstedt, G.; Seldal, T.; Breistol, A. Period length in cyclic animal populations. Ecology 2005, 86, 373–378. [Google Scholar] [CrossRef]
- Weidinger, K. Nest predators of woodland open-nesting songbirds in Central Europe. IBIS 2009, 151, 352–360. [Google Scholar] [CrossRef]
- Bures, S. High common vole Microtus arvalis predation on ground-nesting bird eggs and nestlings. IBIS 1997, 139, 173–174. [Google Scholar] [CrossRef]
- Korpimäki, E.; Norrdahl, K.; Rintajaskari, T. Responses of stoats and least weasels to fluctuating food abundances: Is the low phase of the vole cycle due to mustelid predation? Oecologia 1991, 88, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Koskimies, P.; Väisänen, R.A. Monitoring Bird Populations; Zoological Museum, Finnish Museum of Natural History: Helsinki, Finland, 1991; 144p. [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A. Bird Census Techniques; Academic Press: London, UK, 1992. [Google Scholar]
- Gregory, R.D.; Gibbons, D.W.; Donald, P.F. Bird census and survey techniques. In Bird Ecology and Conservation: A Handbook of Techniques; Sutherland, W.J., Newton, I., Green, R.E., Eds.; Oxford University Press: Cary, NC, USA, 2004; pp. 17–56. [Google Scholar]
- Husby, A.; Kruuk, L.E.B.; Visser, M.E. Decline in the frequency and benefits of multiple brooding in great tits as a consequence of a changing environment. Proc. R. Soc. B Biol. Sci. 2009, 276, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Zingg, S. Zweitbruten beim Gartenrotschwanz Phoenicurus phoenicurus in der Schweiz. Ornitol. Beobacther 2014, 111, 239–246. [Google Scholar]
- SPSS. Linear Mixed-Effects Modeling in SPSS: An Introduction to the Mixed Procedure; SPSS Inc.: Chicago, IL, USA, 2005; pp. 1–29. [Google Scholar]
- Lo, S.; Andrews, S. To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carre, G.; Marquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Hoset, K.; Husby, M. Small between-year variations in nest predation rates are not related with between-year differences in predator identity. Ecoscience 2018, 25, 199–208. [Google Scholar] [CrossRef]
- de Aguiar, I.R.; Vianna, V.R.; Dias, R.I. Nest density, egg conspicuity, vegetation structure and seasonality affect artificial nest predation in the brazilian cerrado. J. Trop. Ecol. 2022, 38, 362–369. [Google Scholar] [CrossRef]
- Schmidt, K.A.; Whelan, C.J. Nest predation on woodland songbirds: When is nest predation density dependent? Oikos 1999, 87, 65–74. [Google Scholar] [CrossRef]
- Sieving, K.E.; Willson, M.F. A temporal shift in Steller’s jay predation on bird eggs. Can. J. Zool.-Rev. Can. Zool. 1999, 77, 1829–1834. [Google Scholar] [CrossRef]
- Benson, T.J.; Brown, J.D.; Bednarz, J.C. Identifying predators clarifies predictors of nest success in a temperate passerine. J. Anim. Ecol. 2010, 79, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Perrins, C.M. Population fluctuations and clutch size in the great tit, Parus Major, L.J. Anim. Ecol. 1965, 34, 601–647. [Google Scholar] [CrossRef]
- McGuire, R.L.; Lanctot, R.B.; Saalfeld, S.T.; Ruthrauff, D.R.; Liebezeit, J.R. Shorebird reproductive response to exceptionally early and late springs varies across sites in arctic Alaska. Front. Ecol. Evol. 2020, 8, 19. [Google Scholar] [CrossRef]
- Byrkjedal, I. Nest predation in relation to snow-cover—A possible factor influencing the start of breeding in shorebirds. Ornis Scand. 1980, 11, 249–252. [Google Scholar] [CrossRef]
- Ishii, Y.; Shimada, M. The effect of learning and search images on predator-prey interactions. Popul. Ecol. 2010, 52, 27–35. [Google Scholar] [CrossRef]
- Martin, T.E.; Geupel, G.R. Nest-monitoring plots-methods for locating nests and monitoring success. J. Field Ornithol. 1993, 64, 507–519. [Google Scholar]
- Piersanti, S.; Salerno, G.; Di Pietro, V.; Giontella, L.; Rebora, M.; Jones, A.; Fincke, O.M. Tests of search image and learning in the wild: Insights from sexual conflict in damselflies. Ecol. Evol. 2021, 11, 4399–4412. [Google Scholar] [CrossRef] [PubMed]
- Beardsell, A.; Gravel, D.; Berteaux, D.; Gauthier, G.; Clermont, J.; Careau, V.; Lecomte, N.; Juhasz, C.C.; Royer-Boutin, P.; Bêty, J. Derivation of predator functional responses using a mechanistic approach in a natural system. Front. Ecol. Evol. 2021, 9, 12. [Google Scholar] [CrossRef]
- Yahner, R.H.; Wright, A.L. Depredation on artificial ground nests: Effects of edge and plot age. J. Wildl. Manag. 1985, 49, 508–513. [Google Scholar] [CrossRef]
- Angelstam, P. Predation on ground-nesting birds’ nests in relation to predator densities and habitat edge. Oikos 1986, 47, 365–373. [Google Scholar] [CrossRef]
- Sonerud, G.A.; Fjeld, P.E. Long term memory in egg predators—An experiment with a hooded crow. Ornis Scand. 1987, 18, 323–325. [Google Scholar] [CrossRef]
- Bravo, C.; Sarasa, M.; Bretagnolle, V.; Pays, O. Detectability and predator strategy affect egg depredation rates: Implications for mitigating nest depredation in farmlands. Sci. Total Environ. 2022, 829, 9. [Google Scholar] [CrossRef] [PubMed]
- Buler, J.J.; Hamilton, R.B. Predation of natural and artificial nests in a southern pine forest. Auk 2000, 117, 739–747. [Google Scholar] [CrossRef]
- Willebrand, T.; Marcström, V. On the danger of using dummy nests to study predation. Auk 1988, 105, 378–379. [Google Scholar] [CrossRef]
- Harts, A.M.F.; Kristensen, N.P.; Kokko, H. Predation can select for later and more synchronous arrival times in migrating species. Oikos 2016, 125, 1528–1538. [Google Scholar] [CrossRef]
- Verhulst, S.; Nilsson, J.-Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B-Biol. Sci. 2008, 393, 399–410. [Google Scholar] [CrossRef]
- Duca, C.; Brunelli, W.A.; Doherty, P.F. Predator search image and the dilution effect: When is the best time to nest? Auk 2019, 136, 7. [Google Scholar] [CrossRef]
- Morrison, C.A.; Robinson, R.A.; Clark, J.A.; Leech, D.I.; Gill, J.A. Season-long consequences of shifts in timing of breeding for productivity in willow warblers, Phylloscopus trochilus. Bird Stud. 2015, 62, 161–169. [Google Scholar] [CrossRef]
- Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 1999, 68, 940–950. [Google Scholar] [CrossRef]
- Brinkhof, M.W.G.; Cave, A.J.; Daan, S.; Perdeck, A.C. Timing of current reproduction directly affects future reproductive output in european coots. Evolution 2002, 56, 400–411. [Google Scholar] [PubMed]
- Nilsson, J.A. Energetic bottle-necks during breeding and the reproductive cost of being too early. J. Anim. Ecol. 1994, 63, 200–208. [Google Scholar] [CrossRef]
- Tökölyi, J.; McNamara, J.M.; Houston, A.I.; Barta, Z. Timing of avian reproduction in unpredictable environments. Evol. Ecol. 2012, 26, 25–42. [Google Scholar] [CrossRef]
- Pearson, M.; Husby, M. Supplementary feeding improves breeding performance in Eurasian eagle owl Bubo bubo. Ornis Fenn. 2021, 98, 46–58. [Google Scholar] [CrossRef]
- Brommer, J.E.; Karell, P.; Pietiainen, H. Supplementary fed Ural owls increase their reproductive output with a one year time lag. Oecologia 2004, 139, 354–358. [Google Scholar] [CrossRef]
- Dhindsa, M.S.; Boag, D.A. The effect of food supplementation on the reproductive success of black-billed magpies Pica pica. IBIS 1990, 132, 595–602. [Google Scholar] [CrossRef]
- Karell, P.; Kontiainen, P.; Pietiainen, H.; Siitari, H.; Brommer, J.E. Maternal effects on offspring Igs and egg size in relation to natural and experimentally improved food supply. Funct. Ecol. 2008, 22, 682–690. [Google Scholar] [CrossRef]
Bird Names | Scientific Names | N | Mar | April | May | June | July | A | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hazel Grouse | Tetrastes bonasia | 1 | ||||||||||||||
Common Wood Pigeon | Columba palumbus | 92 | ||||||||||||||
Eurasian Oystercatcher | Haematopus ostralegus | 13 | ||||||||||||||
Northern Lapwing | Vanellus vanellus | 10 | ||||||||||||||
European Golden Plover | Pluvialis apricaria | 1 | ||||||||||||||
Common Snipe | Gallinago gallinago | 4 | ||||||||||||||
Common Sandpiper | Actitis hypoleucos | 5 | ||||||||||||||
Common Redshank | Tringa totanus | 2 | ||||||||||||||
Common Greenshank | Tringa nebularia | 5 | ||||||||||||||
Common Gull | Larus canus | 79 | ||||||||||||||
Black-headed Gull | Chroicocephalus ridibundus | 9 | ||||||||||||||
Arctic Tern | Sterna paradisaea | 1 | ||||||||||||||
Siberian Jay | Perisoreus infaustus | 3 | ||||||||||||||
Eurasian Jay | Garrulus glandarius | 1 | ||||||||||||||
Eurasian Magpie | Pica pica | 20 | ||||||||||||||
Hooded Crow | Corvus cornix | 76 | ||||||||||||||
Eurasian Skylark | Alauda arvensis | 1 | ||||||||||||||
Willow Warbler | Phylloscopus trochilus | 218 | ||||||||||||||
Common Chiffchaff | Phylloscopus collybita | 113 | ||||||||||||||
Sedge Warbler | Acrocephalus schoenobaenus | 1 | ||||||||||||||
Icterine Warbler | Hippolais icterina | 9 | ||||||||||||||
Eurasian Blackcap | Sylvia atricapilla | 27 | ||||||||||||||
Garden Warbler | Sylvia borin | 14 | ||||||||||||||
Lesser Whitethroat | Curruca curruca | 3 | ||||||||||||||
Common Whitethroat | Curruca communis | 4 | ||||||||||||||
Goldcrest | Regulus regulus | 13 | ||||||||||||||
Eurasian Wren | Troglodytes troglodytes | 17 | ||||||||||||||
Song Trush | Turdus philomelos | 99 | ||||||||||||||
Redwing | Turdus iliacus | 161 | ||||||||||||||
Eurasian Blackbird | Turdus merula | 54 | ||||||||||||||
Fieldfare | Turdus pilaris | 270 | ||||||||||||||
Spotted Flycatcher | Muscicapa striata | 10 | ||||||||||||||
European Robin | Erithacus rubecula | 27 | ||||||||||||||
Common Redstart | Phoenicurus phoenicurus | 8 | ||||||||||||||
Whinchat | Saxicola rubetra | 11 | ||||||||||||||
Dunnock | Prunella modularis | 39 | ||||||||||||||
Tree Pipit | Anthus trivialis | 34 | ||||||||||||||
Common Chaffinch | Fringilla coelebs | 145 | ||||||||||||||
Brambling | Fringilla montifringilla | 66 | ||||||||||||||
Eurasian Bullfinch | Pyrrhula pyrrhula | 7 | ||||||||||||||
European Greenfinch | Chloris chloris | 43 | ||||||||||||||
Common Redpoll | Acanthis flammea | 1 | ||||||||||||||
Red Crossbill | Loxia curvirostra | 3 | ||||||||||||||
Eurasian Siskin | Spinus spinus | 90 | ||||||||||||||
Yellowhammer | Emberiza citrinella | 66 | ||||||||||||||
Reed Bunting | Emberiza schoeniclus | 6 |
Bird Names | Scientific Names | May | June | Total |
---|---|---|---|---|
Common Chiffchaff | Phylloscopus collybita | 6 | 2 | 8 |
Phylloscopus sp. | P. collybita/trochilus | 2 | 0 | 2 |
Icterine Warbler | Hippolais icterina | 0 | 1 | 1 |
Eurasian Blackcap | Sylvia atricapilla | 0 | 2 | 2 |
Lesser Whitethroat | Curruca curruca | 2 | 0 | 2 |
Eurasian Wren | Troglodytes troglodytes | 1 | 1 | 2 |
Song Trush | Turdus philomelos | 2 | 9 | 11 |
Redwing | Turdus iliacus | 36 | 67 | 103 |
Eurasian Blackbird | Turdus merula | 1 | 4 | 5 |
Fieldfare | Turdus pilaris | 119 | 71 | 190 |
Spotted Flycatcher | Muscicapa striata | 0 | 6 | 6 |
European Robin | Erithacus rubecula | 0 | 3 | 3 |
Dunnock | Prunella modularis | 6 | 4 | 10 |
Grey Wagtail | Motacilla cinerea | 1 | 0 | 1 |
White Wagtail | Motacilla alba | 1 | 1 | 2 |
Common Chaffinch | Fringilla coelebs | 0 | 30 | 30 |
Brambling | Fringilla montifringilla | 0 | 1 | 1 |
Eurasian Bullfinch | Pyrrhula pyrrhula | 0 | 1 | 1 |
European Greenfinch | Chloris chloris | 36 | 33 | 69 |
Twite | Linaria flavirostris | 2 | 3 | 5 |
Yellowhammer | Emberiza citrinella | 3 | 1 | 4 |
Total | 218 | 242 | 460 |
Year | N of Areas | Number of Nests in Each Period | ||||||
---|---|---|---|---|---|---|---|---|
March | April | May | June | July | August | p | ||
2005 | 7 | 56 | 56 | 0.829 | ||||
2000 | 3 | 60 + 60 | 0.356 | |||||
2006 | 7 | 80 | 80 | 0.457 | ||||
2000 | 2 | 40 + 40 | +<0.001 | |||||
2000 | 8 | 57 | 56 | +0.008 | ||||
2005 | 2 | 166 | 80 | −0.010 | ||||
2004 | 1 | 23 | 23 | 0.265 | ||||
2003 | 6 | 237 | 240 | −<0.001 | ||||
2022/2023 | 10 * | 52 | 51 | +0.013 | ||||
Total artificial | 46 | 56 | 256 | 240 | 222 | 392 | 291 | |
Natural Nests | 218 | 240 | +0.002 |
Model Term | Coefficient | SE | t | p | CILower | CIUpper |
---|---|---|---|---|---|---|
Intercept | 70.627 | 17.341 | 4.073 | <0.001 | 36.602 | 104.653 |
Number of natural nests | 0.000 | 0.000 | 7.274 | <0.001 | 0.000 | 0.000 |
Nest placement; in a tree | 0.131 | 0.030 | 4.394 | <0.001 | 0.072 | 0.189 |
Habitat; open landscape | 0.490 | 0.046 | 10.754 | <0.001 | 0.400 | 0.579 |
Habitat; forest edge | 0.081 | 0.031 | 2.663 | 0.008 | 0.021 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husby, M.; Verdal, T. Experiments Reveal That Search Image Might Be Responsible for Seasonal Variation in Nest-Predation Rates. Diversity 2024, 16, 356. https://doi.org/10.3390/d16060356
Husby M, Verdal T. Experiments Reveal That Search Image Might Be Responsible for Seasonal Variation in Nest-Predation Rates. Diversity. 2024; 16(6):356. https://doi.org/10.3390/d16060356
Chicago/Turabian StyleHusby, Magne, and Turid Verdal. 2024. "Experiments Reveal That Search Image Might Be Responsible for Seasonal Variation in Nest-Predation Rates" Diversity 16, no. 6: 356. https://doi.org/10.3390/d16060356
APA StyleHusby, M., & Verdal, T. (2024). Experiments Reveal That Search Image Might Be Responsible for Seasonal Variation in Nest-Predation Rates. Diversity, 16(6), 356. https://doi.org/10.3390/d16060356