Decoding Anotylus (Thomson 1859) Beetle Diversity: DNA and External Morphology Match in Área de Conservaciόn Guanacaste, Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Analysis of Anotylus
3.2. Morphometric Analysis of Anotylus
3.3. Comparing Morphometric and Molecular Differences
4. Discussion
4.1. Anotylus—Diverse and Variable across Elevation
4.2. Cryptic Diversity within Cryptic Diversity
4.3. Rarity
4.4. Cryptic Species and Protected Areas
4.5. Elevational Patterns and Vulnerability in the Climate Crisis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed]
- Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Hernández Robles, D.R.; Plata Corredor, C.A.; Stjernegaard Jeppesen, T.; Örn, A.; Vandepitte, L.; Hobern, D.; et al. Catalogue of Life Checklist. Version 2024-05-20. 2024. Available online: https://www.checklistbank.org/dataset/296511/about (accessed on 2 June 2024).
- Costello, M.J.; May, R.M.; Stork, N.E. Can We Name Earth’s Species before They Go Extinct? Science 2013, 339, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wiens, J.J. Estimating Global Biodiversity: The Role of Cryptic Insect Species. Syst. Biol. 2023, 72, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, J.L.; Mulcahy, D.G.; Vanthomme, H.; Tobi, E.; Wynn, A.H.; Zimkus, B.M.; McDiarmid, R.W. How many species and under what names? Using DNA barcoding and GenBank data for west Central African amphibian conservation. PLoS ONE 2017, 12, e0187283. [Google Scholar] [CrossRef] [PubMed]
- Suzán, G.; Marcé, E.; Giermakowski, J.T.; Mills, J.N.; Ceballos, G.; Ostfeld, R.S.; Armién, B.; Pascale, J.M.; Yates, T.L. Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence. PLoS ONE 2009, 4, e5461. [Google Scholar] [CrossRef] [PubMed]
- Noss, R.F. Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Bortolus, A. Error cascades in the biological sciences: The unwanted consequences of using bad taxonomy in ecology. Ambio 2008, 37, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.S. Species: A History of the Idea; University of California Press: Berkeley, CA, USA, 2011; p. 320. [Google Scholar]
- Padial, J.M.; De la Riva, I. Taxonomic inflation and the stability of species lists: The perils of ostrich’s behavior. Syst. Biol. 2006, 55, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Grixti, J.C.; Roughley, R.E.; Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool.-Rev. Can. Zool. 2009, 87, 1097–1110. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Wagner David, L.; Grames Eliza, M.; Forister Matthew, L.; Berenbaum May, R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef] [PubMed]
- Seymour, M.; Roslin, T.; deWaard, J.R.; Perez, K.H.J.; D’Souza, M.L.; Ratnasingham, S.; Ashfaq, M.; Levesque-Beaudin, V.; Blagoev, G.A.; Bukowski, B.; et al. Global arthropod beta-diversity is spatially and temporally structured by latitude. Commun. Biol. 2024, 7, 552. [Google Scholar] [CrossRef] [PubMed]
- Giam, X.; Scheffers, B.R.; Sodhi, N.S.; Wilcove, D.S.; Ceballos, G.; Ehrlich, P.R. Reservoirs of richness: Least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B Biol. Sci. 2011, 279, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Vieites, D.R.; Wollenberg, K.C.; Andreone, F.; Kohler, J.; Glaw, F.; Vences, M. Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc. Natl. Acad. Sci. USA 2009, 106, 8267–8272. [Google Scholar] [CrossRef] [PubMed]
- Titley, M.A.; Snaddon, J.L.; Turner, E.C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 2017, 12, e0189577. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Clark, B.R.; Kitching, I.J.; Mayo, S.J.; Scoble, M.J. The Web and the Structure of Taxonomy. Syst. Biol. 2007, 56, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, Q.D.; Raven, P.H.; Wilson, E.O. Taxonomy: Impediment or Expedient? Science 2004, 303, 285. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.R.; Jetz, W. Shortfalls and opportunities in terrestrial vertebrate species discovery. Nat. Ecol. Evol. 2021, 5, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Magnolia Press: Auckland, New Zealand, 2011; p. 237. [Google Scholar]
- Pante, E.; Schoelinck, C.; Puillandre, N. From Integrative Taxonomy to Species Description: One Step beyond. Syst. Biol. 2015, 64, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.A.; May, R.M. Taxonomic Bias in Conservation Research. Science 2002, 297, 191–192. [Google Scholar] [CrossRef]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef]
- Wilson, E.O. The Biological Diversity Crisis: Despite unprecedented extinction rates, the extent of biological diversity remains unmeasured. BioScience 1985, 35, 700–706. [Google Scholar] [CrossRef]
- Brunke, A.J.; Chatzimanolis, S. A revision of Haematodes Laporte and Weiserianum Bernhauer (Coleoptera: Staphylinidae: Staphylininae: Xanthopygina). PeerJ 2018, 6, e4582. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-t.; Hiroki, O.; Munetoshi, M. Revision of the intertidal rove beetle genus Bryothinusa from Japan (Coleoptera: Staphylinidae: Aleocharinae). Acta Entomol. Musei Natl. Pragae 2021, 61, 163–201. [Google Scholar] [CrossRef]
- Janak, J.; Bordoni, A. Revision of the genus Thyreocephalus and description of Afrus gen. nov. of Africa south of the Sahara (Coleoptera: Staphylinidae: Staphylininae). Zootaxa 2015, 4038, 1–94. [Google Scholar] [CrossRef]
- Sikes, D.S.; Thayer, M.K.; Newton, A.F. Large carrion and burying beetles evolved from Staphylinidae (Coleoptera, Staphylinidae, Silphinae): A review of the evidence. ZooKeys 2024, 1200, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Brunke, A.J.; Hansen, A.K.; Salnitska, M.; Kypke, J.L.; Predeus, A.V.; Escalona, H.; Chapados, J.T.; Eyres, J.; Richter, R.; Smetana, A.; et al. The limits of Quediini at last (Staphylinidae: Staphylininae): A rove beetle mega-radiation resolved by comprehensive sampling and anchored phylogenomics. Syst. Entomol. 2021, 46, 396–421. [Google Scholar] [CrossRef]
- Chatzimanolis, S. A revision of the neotropical beetle genus Isanopus Sharp, 1876 (Coleoptera: Staphylinidae: Staphylinini). J. Nat. Hist. 2008, 42, 1765–1792. [Google Scholar] [CrossRef]
- Betz, O.; Irmler, U.; Klimaszewski, J.; Gusarov, V.I.; Chatzimanolis, S.; Asenjo, A.; Brunke, A.J.; Clarke, D.J.; Lipkow, E.; Buffam, J.; et al. Biology of Rove Beetles (Staphylinidae): Life History, Evolution, Ecology and Distribution; Betz, O., Irmler, U., Klimaszewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Brunke, A.J.; Bouchard, P.; Douglas, H.B.; Pentinsaari, M. Coleoptera of Canada. ZooKeys 2019, 819, 361–376. [Google Scholar] [CrossRef]
- Basset, Y.; Novotny, V.; Miller, S.E.; Weiblen, G.D.; Missa, O.; Stewart, A.J.A. Conservation and biological monitoring of tropical forests: The role of parataxonomists. J. Appl. Ecol. 2004, 41, 163–174. [Google Scholar] [CrossRef]
- Janzen, D.H. Why mountain passes are higher in the tropics. Am. Nat. 1967, 101, 233–249. [Google Scholar] [CrossRef]
- Irmler, U.; Klimaszewski, J.; Betz, O. Introduction to the biology of rove beetles. In Biology of Rove Beetles (Staphylinidae): Life History, Evolution, Ecology and Distribution; Springer: Cham, Switzerland, 2018; pp. 1–4. [Google Scholar]
- Tihelka, E.; Thayer, M.K.; Newton, A.F.; Cai, C. New Data, Old Story: Molecular Data Illuminate the Tribal Relationships among Rove Beetles of the Subfamily Staphylininae (Coleoptera: Staphylinidae). Insects 2020, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Lohse, G.A.; Klimaszewski, J.; Smetana, A. Revision of Arctic Aleocharinae of North America (Coleoptera: Staphylinidae). Coleopt. Bull. 1990, 44, 121–202. [Google Scholar]
- Sakchoowong, W.; Nomura, S.; Ogata, K.; Chanpaisaeng, J. Diversity of pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) in eastern Thailand. Entomol. Sci. 2008, 11, 301–313. [Google Scholar] [CrossRef]
- Belskaya, E.A.; Kolesnikova, A.A. Species composition and ecological characteristics of rove beetles (Coleoptera, Staphylinidae) in the southern taiga of the Middle Urals. Entomol. Rev. 2011, 91, 599–610. [Google Scholar] [CrossRef]
- Moore, I.; Legner, E.F. Intertidal rove beetles (Coleoptera: Staphylinidae). Mar. Insects 1976, 1976, 521–551. [Google Scholar]
- Rodriguez, J.J.; Fernández-Triana, J.L.; Smith, M.A.; Janzen, D.H.; Hallwachs, W.; Erwin, T.L.; Whitfield, J.B. Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conserv. Divers. 2013, 6, 530–536. [Google Scholar] [CrossRef]
- Forbes, A.A.; Bagley, R.K.; Beer, M.A.; Hippee, A.C.; Widmayer, H.A. Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 2018, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.; Hallwachs, W.; Pereira, G.; Blanco, R.; Masis, A.; Chavarria, M.M.; Chavarria, F.; Guadamuz, A.; Araya, M.; Smith, M.A.; et al. Using DNA-barcoded Malaise trap samples to measure impact of a geothermal energy project on the biodiversity of a Costa Rican old-growth rain forest. Genome 2020, 63, 407–436. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Ratnasingham, S.; Zakharov, E.V.; Telfer, A.C.; Levesque-Beaudin, V.; Milton, M.A.; Pedersen, S.; Jannetta, P.; deWaard, J.R. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150333. [Google Scholar] [CrossRef]
- Parker, J. Staphylinids. Curr. Biol. 2017, 27, R49–R51. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.S.; Ashe, J.S. Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). Biodivers. Conserv. 2000, 9, 617–653. [Google Scholar] [CrossRef]
- Klimaszewski, J.; Brunke, A.J.; Work, T.T.; Venier, L. Rove Beetles (Coleoptera, Staphylinidae) as Bioindicators of Change in Boreal Forests and Their Biological Control Services in Agroecosystems: Canadian Case Studies. In Biology of Rove Beetles (Staphylinidae): Life History, Evolution, Ecology and Distribution; Betz, O., Irmler, U., Klimaszewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 161–181. [Google Scholar]
- Bohac, J. Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ. 1999, 74, 357–372. [Google Scholar] [CrossRef]
- Makranczy, G. Systematics and phylogenetic relationships of the genera in the Carpelimus group (Coleoptera: Staphylinidae: Oxytelinae). Ann. Hist. Nat. Musei Natl. Hung. 2006, 98, 29–120. [Google Scholar]
- Kishimoto, H.; Adachi, I. Predation and oviposition by predatory Stethorus japonicus, Oligota kashmirica benefica, and Scolothrips takahashii in egg patches of various spider mite species. Entomol. Exp. Et Appl. 2008, 128, 294–302. [Google Scholar] [CrossRef]
- Kollat-Palenga, I.; Basedow, T. Aphid feeding of predatory Staphylinidae on different strata (soil surface and wheat seedlings) in laboratory experiments/Blattlausfraß bei räuberischen Staphylinidae auf der Bodenoberfläche und auf Weizenpflanzen im Laborversuch. Z. Für Pflanzenkrankh. Und Pflanzenschutz J. Plant Dis. Prot. 2000, 107, 643–648. [Google Scholar]
- Pohl, G.; Langor, D.; Klimaszewski, J.; Work, T.; Paquin, P. Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests. Can. Entomol. 2008, 140, 415–436. [Google Scholar] [CrossRef]
- Gusarov, V.I. Phylogeny of the Family Staphylinidae Based on Molecular Data: A Review. In Biology of Rove Beetles (Staphylinidae): Life History, Evolution, Ecology and Distribution; Betz, O., Irmler, U., Klimaszewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 7–25. [Google Scholar]
- Lü, L.; Zhou, H.Z. Taxonomy of the genus Oxytelus Gravenhorst (Coleoptera: Staphylinidae: Oxytelinae) from China. Zootaxa 2012, 3576, 1–63. [Google Scholar] [CrossRef]
- Herman, L.H. Phylogeny and reclassification of the genera of the rove-beetle subfamily Oxytelinae of the world (Coleoptera, Staphylinidae). Bull. AMNH 1970, 142, 345–454. [Google Scholar]
- Hammond, P.M. A review of the genus Anotylus C.G. Thomson (Coleoptera: Staphylinidae). Bull. Br. Mus. Entomol. 1976, 33, 139–187. [Google Scholar]
- Herman, L. Catalog of the Staphylinidae. Am. Mus. Nat. Hist. Bull. 2001, 265, 1–426. [Google Scholar]
- Makranczy, G. Four new Neotropical species of Anotylus with an interesting sexual dimorphism (Coleoptera, Staphylinidae: Oxytelinae). Ann. Hist. Nat. Musei Natl. Hung. 2011, 103, 43–64. [Google Scholar]
- Herman, L.H. Catalog of the Staphylinidae (Insecta: Coleoptera). 1758 to the End of the Second Millennium III. Oxyteline Group. Bull. Am. Mus. Nat. Hist. 2001, 2001, 1067–1806. [Google Scholar] [CrossRef]
- Burns, J.; Janzen, D.H.; Hallwachs, W.; Hajibabaei, M.; Hebert, P. Genitalia, DNA barcodes, and life histories synonymize telles with thracides—A genus in which telles arcalaus looks out of place (Hesperiidae: Hesperiinae). J. Lepid. Soc. 2009, 63, 141–153. [Google Scholar]
- Bernhauer, M. Neue Staphyliniden aus Kostarika. Zool. Anz. 1942, 138, 1–27. [Google Scholar]
- Makranczy, G. Review of the Anotylus cimicoides species group (Coleoptera: Staphylinidae: Oxytelinae). Acta Zool. Acad. Sci. Hung. 2017, 63, 143–262. [Google Scholar] [CrossRef]
- Dolson, S.J.; Loewen, E.; Jones, K.; Jacobs, S.R.; Solis, A.; Hallwachs, W.; Brunke, A.J.; Janzen, D.H.; Smith, M.A. Diversity and phylogenetic community structure across elevation during climate change in a family of hyperdiverse neotropical beetles (Staphylinidae). Ecography 2021, 44, 740–752. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 2013, 8, e66213. [Google Scholar] [CrossRef]
- Smith, M.A.; Hallwachs, W.; Janzen, D.H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 2014, 37, 720–731. [Google Scholar] [CrossRef]
- Smith, M.A.; Warne, C.; Pare, K.; Dolson, S.; Loewen, E.; Jones, K.; McPhee, M.; Stitt, L.; Janke, L.; Smith, R.M.; et al. Communities of Small Terrestrial Arthropods Change Rapidly Along a Costa Rican Elevation Gradient. In Neotropical Gradients and Their Analysis; Myster, R.W., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 255–307. [Google Scholar]
- Dolson, S.J.; McPhee, M.; Viquez, C.F.; Hallwachs, W.; Janzen, D.H.; Smith, M.A. Spider diversity across an elevation gradient in Área de Conservación Guanacaste (ACG), Costa Rica. Biotropica 2020, 52, 1092–1102. [Google Scholar] [CrossRef]
- Warne, C.P.K.; Hallwachs, W.; Janzen, D.H.; Smith, M.A. Functional and genetic diversity changes through time in a cloud forest ant assemblage. Biotropica 2020, 52, 1084–1091. [Google Scholar] [CrossRef]
- Janzen, D.; Hallwachs, W. Área de Conservación Guanacaste, northwestern Costa Rica: Converting a tropical national park to conservation via biodevelopment. Biotropica 2020, 52, 1017–1029. [Google Scholar] [CrossRef]
- Janzen, D.H.; Hallwachs, W. Biodiversity Conservation History and Future in Costa Rica: The Case of Area de Conservacion Guanacaste (ACG). In Costa Rican Ecosystems; Kappelle, M., Ed.; University of Chicago Press: Chicago, IL, USA, 2016; pp. 290–341. [Google Scholar]
- Smith, M.A. Temperature, precipitation and soil characteristics of Volcan Cacao—Area de Conservacion Guanacaste (ACG), Costa Rica. 2023. Available online: https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/LQYQJZ (accessed on 5 February 2024).
- Ivanova, V.N.; Dewaard, J.R.; Hebert, P.D.N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 2006, 6, 998–1002. [Google Scholar] [CrossRef]
- Smith, M.A.; Fisher, B.L. Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius. Front. Zool. 2009, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Brunke, A.; Newton, A.; Klimaszewski, J.; Majka, C.; Marshall, S. Staphylinidae of Eastern Canada and Adjacent United States. Key to Subfamilies; Staphylininae: Tribes and Subtribes, and Species of Staphylinina. Can. J. Arthropod Identif. 2011, 12, 1–110. [Google Scholar] [CrossRef]
- Navarrete-Heredia, J.L.; Newton, A.F.; Thayer, M.K.; Chandler, D.S. Guia Ilustrada Para los Generos de Staphylinidae (Coleoptera) de Mexico; Universidad de Guadalajara y CONABIO: Coyoacan, Mexico, 2002; pp. 1–371. [Google Scholar]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 1986, 17, 57–86. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree-Version 1.4. 3, a Graphical Viewer of Phylogenetic Trees. 2017. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 2 June 2024).
- Hammond, P.M. The crassicornis species-group of the genus Anotylus (Staphylinidae). Syst. Entomol. 1976, 1, 19–51. [Google Scholar] [CrossRef]
- Wang, L.-F.; Zhou, H.-Z. Taxonomy of Anotylus nitidifrons group (Coleoptera: Staphylinidae: Oxytelinae) and five new species from China. Zootaxa 2020, 4861, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Prodanov, D. Color Histogram. 2010. Available online: https://imagej.net/ij/plugins/color-histogram.html (accessed on 2 June 2024).
- R_Core_Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available online: https://www.R-project.org/ (accessed on 2 June 2024).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Josse, J.; Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 2016, 70, 1–31. [Google Scholar] [CrossRef]
- Kiers, H.A.L. Weighted least squares fitting using ordinary least squares algorithms. Psychometrika 1997, 62, 251–266. [Google Scholar] [CrossRef]
- Verbanck, M.; Josse, J.; Husson, F. Regularised PCA to denoise and visualise data. Stat. Comput. 2015, 25, 471–486. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Revell, L.J. phytools 2.0: An updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 2024, 12, e16505. [Google Scholar] [CrossRef]
- Bjornstad, O.N. ncf: Spatial Nonparametric Covariance Functions; R package version 1.1-4. 2012. Available online: http://CRAN.R-project.org/package=ncf (accessed on 2 June 2024).
- Ballard, J.W.O.; Rand, D.M. The population biology of mitochondrial DNA and its phylogenetic implications. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 621–642. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Y.; Li, C.; Li, L.; Men, X. Mitochondrial DNA as a Molecular Marker in Insect Ecology: Current Status and Future Prospects. Ann. Entomol. Soc. Am. 2021, 114, 470–476. [Google Scholar] [CrossRef]
- Smith, M.A.; Fernandez-Triana, J.L.; Eveleigh, E.; Gomez, J.; Guclu, C.; Hallwachs, W.; Hebert, P.D.N.; Hrcek, J.; Huber, J.T.; Janzen, D.; et al. DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): Impacts after 8years and nearly 20,000 sequences. Mol. Ecol. Resour. 2013, 13, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.H.; Hallwachs, W.; Blandin, P.; Burns, J.M.; Cadiou, J.-M.; Chacon, I.; Dapkey, T.; Deans, A.R.; Epstein, M.E.; Espinoza, B.; et al. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol. Ecol. Resour. 2009, 9, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W.; Hebert, P.D.N. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 2006, 103, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Wood, D.M.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc. Natl. Acad. Sci. USA 2007, 104, 4967–4972. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Woodley, N.E.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc. Natl. Acad. Sci. USA 2006, 103, 3657–3662. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.S.; Rubio, R.M.; Guerrero, J.J.; Garre, M.J.; Serrano, J.; Hebert, P.D.N.; Hausmann, A. Close congruence between Barcode Index Numbers (bins) and species boundaries in the Erebidae (Lepidoptera: Noctuoidea) of the Iberian Peninsula. Biodivers Data J. 2017, e19840. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Makranczy, G.; Ren, D. A Mesozoic species of Anotylus (Coleoptera, Staphylinidae, Oxytelinae) from Liaoning, China, with the earliest evidence of sexual dimorphism in rove beetles. J. Paleontol. 2012, 86, 508–512. [Google Scholar] [CrossRef]
- Hendrich, L.; Morinière, J.; Haszprunar, G.; Hebert, P.D.N.; Hausmann, A.; Köhler, F.; Balke, M. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: Adding more than 3500 identified species to BOLD. Mol. Ecol. Resour. 2015, 15, 795–818. [Google Scholar] [CrossRef]
- Janzen, D.H.; Hallwachs, W.; Burns, J.M.; Hajibabaei, M.; Bertrand, C.; Hebert, P.D.N. Reading the Complex Skipper Butterfly Fauna of One Tropical Place. PLoS ONE 2011, 6, e19874. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.M.; Janzen, D.H.; Hajibabaei, M.; Hallwachs, W.; Hebert, P.D.N. DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides. J. Lepid. Soc. 2007, 61, 138–153. [Google Scholar]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.R.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef]
- Sharkey, M.J.; Janzen, D.H.; Hallwachs, W.; Chapman, E.G.; Smith, M.A.; Dapkey, T.; Brown, A.; Ratnasingham, S.; Naik, S.; Manjunath, R.; et al. Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. ZooKeys 2021, 1013, 1–665. [Google Scholar] [PubMed]
- Coddington, J.; Agnarsson, I.; Miller, J.; Kuntner, M.; Hormiga, G. Undersampling bias: The null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol. 2009, 78, 73–84. [Google Scholar] [CrossRef]
- Stork, N.E.; Grimbacher, P.S. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc. R. Soc. B Biol. Sci. 2006, 273, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Balke, M.; Meier, R. Determining Species Boundaries in a World Full of Rarity: Singletons, Species Delimitation Methods. Syst. Biol. 2011, 61, 165–169. [Google Scholar] [CrossRef]
- Escobar, F.; Lobo, J.M.; Halffter, G. Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob. Ecol. Biogeogr. 2005, 14, 327–337. [Google Scholar] [CrossRef]
- Deng, J.; Guo, Y.; Cheng, Z.; Lu, C.; Huang, X. The Prevalence of Single-Specimen/Locality Species in Insect Taxonomy: An Empirical Analysis. Diversity 2019, 11, 106. [Google Scholar] [CrossRef]
- Smith, M.A.; Eveleigh, E.S.; McCann, K.S.; Merilo, M.T.; McCarthy, P.C.; Rooyen, K.I.V. Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses. PLoS ONE 2011, 6, e14424. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.H.; Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl. Acad. Sci. USA 2021, 118, e2002546117. [Google Scholar] [CrossRef] [PubMed]
BIN | Count | Mean Elevation (m) | Median Elevation (m) | Maximum Elevation (m) | Minimum Elevation (m) |
---|---|---|---|---|---|
BOLD:ACZ5516 | 116 | 1220.96 | 1180 | 1480 | 304 |
BOLD:ACZ5742 | 11 | 1177.55 | 1304 | 1458 | 304 |
BOLD:ACZ5987 | 1 | 1046.00 | 1046 | 1046 | 1046 |
BOLD:ACZ6447 | 10 | 1009.70 | 1128 | 1128 | 323 |
BOLD:ADF3772 | 47 | 1017.94 | 1184 | 1314 | 700 |
BOLD:ADF4138 | 131 | 850.00 | 831 | 1280 | 820 |
BOLD:ADF4200 | 4 | 1254.25 | 1262 | 1304 | 1189 |
BOLD:ADF8741 | 10 | 1232.20 | 1247 | 1313 | 1050 |
BOLD:ADG0617 | 1 | 1314.00 | 1314 | 1314 | 1314 |
BOLD:ADG1201 | 15 | 1329.20 | 1310 | 1482 | 1000 |
BOLD:ADH8436 | 2 | 1343.50 | 1343.5 | 1485 | 1202 |
BOLD:ADH9095 | 2 | 1187.50 | 1187.5 | 1189 | 1186 |
BOLD:ADH9620 | 1 | 1300.00 | 1300 | 1300 | 1300 |
BOLD:ADH9622 | 7 | 889.29 | 1011 | 1011 | 420 |
BOLD:ADI3175 | 4 | 1216.00 | 1190 | 1304 | 1180 |
BOLD:ADL5474 | 2 | 1232.50 | 1232.5 | 1460 | 1005 |
BOLD:ADR2790 | 4 | 823.75 | 1047 | 1190 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Underwood, K.D.; Puschendorf, R.; Bilton, D.T.; Hallwachs, W.; Janzen, D.H.; Smith, M.A. Decoding Anotylus (Thomson 1859) Beetle Diversity: DNA and External Morphology Match in Área de Conservaciόn Guanacaste, Costa Rica. Diversity 2024, 16, 441. https://doi.org/10.3390/d16080441
Underwood KD, Puschendorf R, Bilton DT, Hallwachs W, Janzen DH, Smith MA. Decoding Anotylus (Thomson 1859) Beetle Diversity: DNA and External Morphology Match in Área de Conservaciόn Guanacaste, Costa Rica. Diversity. 2024; 16(8):441. https://doi.org/10.3390/d16080441
Chicago/Turabian StyleUnderwood, K. Dante, Robert Puschendorf, David T. Bilton, Winnie Hallwachs, Daniel H. Janzen, and M. Alex Smith. 2024. "Decoding Anotylus (Thomson 1859) Beetle Diversity: DNA and External Morphology Match in Área de Conservaciόn Guanacaste, Costa Rica" Diversity 16, no. 8: 441. https://doi.org/10.3390/d16080441
APA StyleUnderwood, K. D., Puschendorf, R., Bilton, D. T., Hallwachs, W., Janzen, D. H., & Smith, M. A. (2024). Decoding Anotylus (Thomson 1859) Beetle Diversity: DNA and External Morphology Match in Área de Conservaciόn Guanacaste, Costa Rica. Diversity, 16(8), 441. https://doi.org/10.3390/d16080441