Current Status of HbA1c Biosensors
Abstract
:1. Introduction
2. HbA1c Biosensors
2.1. Affinity Biosensors Based on Boronic Acid Derivatives
2.1.1. Biosensors Based on Ferrocene-Boronic Acid (FcBA)
2.1.2. Biosensors Based on Thiophene-3-Boronic Acid (T3BA)
2.1.3. Biosensors Based on 3-Aminophenyl Boronic Acid (APBA)
2.1.4. Biosensors Based on Formylphenylboronic Acid (FPBA)
2.2. Antibody-Modified Biosensors
2.2.1. Immobilization of Hbs on the Electrode Surface
2.2.2. Immobilization of a Glycated Pentapeptide as HbA1c Analogon
2.2.3. Immobilization of HbA1c Antibody
2.3. Indirect HbA1c Biosensors Based on the Determination of Fructosyl Valine
2.3.1. Fructosyl Amino Acid Oxidase (FAO)-Modified Biosensors
2.3.2. Molecular Imprinting Catalyst (MIC)-Modified Biosensors
2.3.3. Non-Enzymatic Biosensors
3. Analysis of Samples from Human Blood
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
ADA | American Diabetes Association |
APBA | 3-aminophenyl boronic acid |
ARS | alizarin red S |
Au | gold |
CPE | carbon paste electrode |
DCCT | Diabetes Control and Complications Trial |
DDAB | didodecyl-dimethylammonium bromide |
DM | diabetes mellitus |
DOCA | deoxycholic acid |
DTBA | 4,4-dithiodibutyric acid |
EIS | electrochemical impedance spectroscopy |
ERGO | electrodeposition of reduced graphene oxide |
ESMs | eggshell membranes |
FAO | fructosyl amino acid oxidase |
FcBA | ferrocene-boronic acid |
FcM | ferrocenemethanol |
FDMA | 1,10-di(aminomethyl) ferrocene |
FET | field effect transistor |
FITC | fluorescein isothiocyanate |
FPBA | formyl-phenylboronic acid |
FTO | fluorine doped tin oxidase |
FV | fructosyl valine |
GCE | glassy carbon electrode |
GCPE | glassy carbon paste electrode |
GHbs | glycosylated hemoglobins |
GNs | graphene nanosheets |
GO | graphene oxide |
GOx | glucose oxidases |
GPP | glycated pentapeptide |
Hb | hemoglobin |
HbA0 | non-glycated hemoglobin |
HbA1c | glycated hemoglobin |
HCF | hexacyanoferrate |
Hp | haptoglobin |
IDA | interdigitated electrode array |
IFCC | International Federation of Clinical Chemistry and Laboratory Medicine |
IgG | immunoglobin G |
ISFET | ion-sensitive field-effect transistors |
ITO | indium tin oxide |
LOC | lab-on-a-chip |
LOD | limit of detection |
MEMS | micro-electro-mechanical systems |
MIC | molecular imprinting catalyst |
MIPs | molecular imprinting polymers |
MPA | 3-Mercaptopropionic acid |
MWCNT | multi-wall carbon nanotube |
NGSP | National Glycohemoglobin Standardization Program |
NPs | nanoparticles |
OEG | oligo(ethylene glycol) |
PAPBA | poly(3-aminophenylboronic acid) |
PGE | pyrolytic graphite electrode |
POC | point-of-care |
PPy | polypyrrole |
PQQ | pyrroloquinoline quinone |
pTTBA | poly (2,2′:5′,5″-terthiophene-3′-p-benzoic acid) |
QDs | quantum dots |
RVC | reticulated vitreous carbon |
SAM | self-assembled monolayer |
SPCE | screen-printed carbon electrode |
SPE | screen-printed electrode |
SWV | square wave voltammograms |
T3BA | thiophene-3-boronic acid |
TBO | toluidine blue O |
TMB | 3,3’,5,5’-tetramethylbenzidine |
WHO | World Health Organization |
ZnO | zinc oxide |
ZrO2 | zirconium dioxide |
References
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar]
- World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2011; pp. 1–25. [Google Scholar]
- Bunn, H.F.; Haney, D.N.; Gabbay, K.H.; Gallop, P.M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem. Biophys. Res. Commun. 1975, 67, 103–109. [Google Scholar] [CrossRef]
- Shapiro, R.; McManus, M.J.; Zalut, C.; Bunn, H.F. Sites of nonenzymatic glycosylation of human hemoglobin A. J. Biol. Chem. 1980, 255, 3120–3127. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar]
- Kitzmiller, J.L.; Block, J.M.; Brown, F.M.; Catalano, P.M.; Conway, D.L.; Coustan, D.R.; Gunderson, E.P.; Herman, W.H.; Hoffman, L.D.; Inturrisi, M.; et al. Managing preexisting diabetes for pregnancy: Summary of evidence and consensus recommendations for care. Diabetes Care 2008, 31, 1060–1079. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Matsunaga, T. Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens. Bioelectron. 2001, 16, 1089–1094. [Google Scholar] [CrossRef]
- Koskinen, L.K. Specificity of hemoglobin A1c measurement by cation exchange liquid chromatography. Evaluation of a Mono S column method. Clin. Chim. Acta 1996, 253, 159–169. [Google Scholar] [CrossRef]
- Li, Y.; Jeppsson, J.-O.; Jornten-Karlsson, M.; Larsson, E.L.; Jungvid, H.; Galaev, I.Y.; Mattiasson, B. Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemglobin. J. Chromatogr. B 2002, 776, 149–160. [Google Scholar] [CrossRef]
- Koval, D.; Kasicka, V.; Cottet, H. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Anal. Biochem. 2011, 413, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Marinova, M.; Altinier, S.; Caldini, A.; Passerini, G.; Pizzagalli, G.; Brogi, M.; Zaninotto, M.; Ceriotti, F.; Plebani, M. Multicenter evaluation of hemoglobin A1c assay on capillary electrophoresis. Clin. Chim. Acta 2013, 424, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.M.; England, J.D.; Costa, J.D.; Hess, R.L.; and Goldstein, D.E. Improved colorimetric assay for glycasylated hemoglobin. Clin. Chem. 1981, 2715, 669–672. [Google Scholar]
- Schnedl, W.J.; Krause, R.; Halwachs-Baumann, G.; Trinker, M.; Lipp, R.W.; Krejs, G.J. Evaluation of HbA1c determination methods in patients with hemoglobinopathies. Diabetes Care 2000, 23, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Jeppsson, J.O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med. 2002, 40, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Goodall, I. HbA1c standardisation destination—Global IFCC standardisation. How, why, where and when—A tortuous pathway from kit manufacturers, via inter-laboratory lyophilized and whole blood comparisons to designated national comparison schemes. Clin. Biochem. Rev. 2005, 26, 5–19. [Google Scholar] [PubMed]
- Ang, S.H.; Thevarajah, M.; Alias, Y.; Khor, S.M. Current aspects in hemoglobin A1c detection: A review. Clin. Chim. Acta 2015, 439, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Takahashi, S.; Du, X.; Anzai, J. Electrochemical biosensors based on ferroceneboronic acid and its derivatives: A review. Biosensors 2014, 4, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Tayebi, L. Glycated hemoglobin-detection methods based on electrochemical biosensors. TrAC Trends Anal. Chem. 2015, 72, 53–67. [Google Scholar] [CrossRef]
- Wang, B.; Anzai, J.-I. Recent progress in electrochemical HbA1c sensors: A review. Materials 2015, 8, 1187–1203. [Google Scholar] [CrossRef]
- Anzai, J. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Wu, Y.X.; Yi, J. Standardization and technology development of measurement of glycated human hemoglobin. Prog. Biochem. Biophys. 2015, 42, 443–456. [Google Scholar]
- Vashist, S.K.; Schleicher, E.; Luppa, P.B.; Luong, J.H.T. Glycated haemoglobin (HbA1c) monitoring for diabetes diagnosis, management and therapy. In Point-of-Care Glucose Detection for Diabetic Monitoring and Management; Vashist, S.K., Luong, J.H.T., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 97–124. ISBN 978-1-4987-8875-5. [Google Scholar]
- Liu, S.; Wollenberger, U.; Katterle, M.; Scheller, F.W. Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin. Sens. Actuators B Chem. 2006, 113, 623–629. [Google Scholar] [CrossRef]
- Halámek, J.; Wollenberger, U.; Stöcklein, W.; Scheller, F.W. Development of a biosensor for glycated hemoglobin. Electrochim. Acta 2007, 53, 1127–1133. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Laiwattanapaisal, W.; Chailapakul, O.; Emneus, J.; Heiskanen, A.R. Boronate-modified interdigitated electrode array for selective impedance-based sensing of glycated hemoglobin. Anal. Chem. 2016, 88, 9582–9589. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Chang, B.Y.; Nam, H.; Park, S.M. Selective electrochemical sensing of glycated hemoglobin (HbA(1c)) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Anal. Chem. 2008, 80, 8035–8044. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.M.; Lan, K.C.; Hu, W.L.; Chen, M.K.; Jang, L.S.; Wang, M.H. Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens. Bioelectron. 2013, 49, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-C.; Lan, K.-C.; Hsieh, K.-M.; Jang, L.-S.; Chen, M.-K. Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device. Sens. Actuators B Chem. 2012, 171–172, 1222–1230. [Google Scholar] [CrossRef]
- Krishna, S.R.; Bhat, N.; Amrutur, B. Detection of glycated hemoglobin using 3-aminophenylboronic acid modified graphene oxide. In Proceedings of the IEEE/NIH Life Science Systems and Applications Workshop (LiSSA), Bethesda, MD, USA, 7–8 April 2011. [Google Scholar]
- Boonyasit, Y.; Heiskanen, A.; Chailapakul, O.; Laiwattanapaisal, W. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes. Anal. Bioanal. Chem. 2015, 407, 5287–5297. [Google Scholar] [CrossRef] [PubMed]
- Boonyasit, Y.; Chailapakul, O.; Laiwattanapaisal, W. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis. Anal. Chim. Acta 2016, 936, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Shim, Y.B. Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Anal. Chem. 2013, 85, 6536–6543. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Crooks, R.M. Determination of percent hemoglobin A1c using a potentiometric method. Anal. Chem. 2013, 85, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Chou, T.C.; Chen, L.C.; Ho, K.C. Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dong, H.; Liu, L.; Hao, Y.; Chang, Z.; Xu, M. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens. Bioelectron. 2015, 64, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.T.; Chen, L.Y.; Shih, M.C.; Chang, Y.; Chen, W.Y. The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal. Biochem. 2008, 375, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Y.; Han, Y.D.; Park, Y.M.; Jeong, C.Y.; Yang, Y.J.; Kim, M.S.; Ku, Y.; Yoon, H.C. Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 2012, 35, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Y.; Yoon, H.C. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sens. Actuators B Chem. 2009, 140, 233–239. [Google Scholar] [CrossRef]
- Halámek, J.; Wollenberger, U.; Stöcklein, W.F.M.; Warsinke, A.; Scheller, F.W. Signal amplification in immunoassays using labeling via boronic acid binding to the sugar moiety of immunoglobulin g: Proof of concept for glycated hemoglobin. Anal. Lett. 2007, 40, 1434–1444. [Google Scholar] [CrossRef]
- Stöllner, D.; Stöcklein, W.; Scheller, F.; Warsinke, A. Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-a1c immunosensor. Anal. Chim. Acta 2002, 470, 111–119. [Google Scholar] [CrossRef]
- Stöllner, D.; Warsinke, A.; Stöcklrin, W.; Dölling, R.; Scheller, F. Immunochemical determination of hemoglobin-A1c utilizing a glycated peptide as hemoglobin-A1c analogon. Biosens. Symosium Tubingen. 2001. Available online: http://barolo.ipc.uni-tuebingen.de/biosensor2001/ (accessed on 4 August 2017).
- Liu, G.; Khor, S.M.; Iyengar, S.G.; Gooding, J.J. Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 2012, 137, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Iyengar, S.G.; Gooding, J.J. An amperometric immunosensor based on a gold nanoparticle-diazonium salt modified sensing interface for the detection of HbA1c in human blood. Electroanalysis 2013, 25, 881–887. [Google Scholar] [CrossRef]
- Liu, G.; Iyengar, S.G.; Gooding, J.J. An electrochemical impedance immunosensor based on gold nanoparticle-modified electrodes for the detection of HbA1c in human blood. Electroanalysis 2012, 24, 1509–1516. [Google Scholar] [CrossRef]
- Molazemhosseini, A.; Magagnin, L.; Vena, P.; Liu, C.C. Single-use disposable electrochemical label-free immunosensor for detection of glycated hemoglobin (HbA1c) using differential pulse voltammetry (DPV). Sensors 2016, 16, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.; Xia, S.; Bian, C.; Sun, J.; Han, J. A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole-gold nanoparticles composite. Biosens. Bioelectron. 2009, 24, 3419–3424. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xue, Q.; Xia, S. A field effect transistor (FET)-based immunosensor for detection of HbA1c and Hb. Biomed. Microdevices 2011, 13, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.N.; Bian, C.; Tong, J.H.; Sun, J.Z.; Zhang, H.; Xia, S.H. CMOS and MEMS based micro hemoglobin-A1c biosensors fabricated by various antibody immobilization methods. Sens. Actuators A Phys. 2011, 169, 282–287. [Google Scholar] [CrossRef]
- Xue, Q.N.; Bian, C.; Tong, J.H.; Sun, J.Z.; Zhang, H.; Xia, S.H. Antibody immobilization based on nano spheres modified by mixed SAMs and SPA for immuno-FET sensor fabrication. Nanotech. Precis. Eng. 2011, 9, 477–482. [Google Scholar]
- Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S. A micro potentiometric immunosensor for hemoglobin-A1c level detection based on mixed SAMs wrapped nano-spheres array. Biosens. Bioelectron. 2011, 26, 2689–2693. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S. FETimmunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers. Microchim. Acta 2012, 176, 65–72. [Google Scholar] [CrossRef]
- Chopra, A.; Tuteja, S.; Sachdeva, N.; Bhasin, K.K.; Bhalla, V.; Suri, C.R. CdTe nanobioprobe based optoelectrochemical immunodetection of diabetic marker HbA1c. Biosens. Bioelectron. 2013, 44, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Stollner, D.; Scheller, F.; Warsinke, A.; Ishimura, F.; Tsugawa, W.; Ferri, S.; Sode, K. Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring. Anal. Bioanal. Chem. 2002, 373, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Li, W.; Zhou, Y.; Liu, C.C. A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection. Sens. Actuators B Chem. 2009, 137, 235–238. [Google Scholar] [CrossRef]
- Chawla, S.; Pundir, C.S. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosens. Bioelectron. 2011, 26, 3438–3443. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Pundir, C.S. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole film. Anal. Biochem. 2012, 430, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron. 2017, 89, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, W.; Ishimura, F.; Ogawa, K.; Sode, K. Development of an enzyme sensor utilizing a novel fructosyl amine oxidase from a marine yeast. Electrochemistry 2000, 68, 869–871. [Google Scholar]
- Sode, K.; Takahashi, Y.; Ohta, S.; Tsugawa, W.; Yamazaki, T. A new concept for the construction of an artifical dehydrogenase for fructosylamine compounds and its application for an amperometric fructosylamine sensor. Anyl. Chim. Acta 2001, 435, 151–156. [Google Scholar] [CrossRef]
- Sode, K.; Ohta, S.; Yanai, Y.; Yamazaki, T. Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor. Biosens. Bioelectron. 2003, 18, 1485–1490. [Google Scholar] [CrossRef]
- Yamazaki, T. An amperometric sensor based on gold electrode modified by soluble molecularly imprinted catalyst for fructosyl valine. Electrochemistry 2012, 80, 353–357. [Google Scholar] [CrossRef]
- Rajkumar, R.; Katterle, M.; Warsinke, A.; Mohwald, H.; Scheller, F.W. Thermometric MIP sensor for fructosyl valine. Biosens. Bioelectron. 2008, 23, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-C.; Chou, T.-C. Glassy carbon paste electrodes for the determination of fructosyl valine. Electroanalysis 2010, 22, 688–693. [Google Scholar] [CrossRef]
- Chien, H.-C.; Chou, T.-C. A nonenzymatic amperometric method for fructosyl-valine sensing using ferroceneboronic acid. Electroanalysis 2011, 23, 402–408. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Ferri, S.; Tsugawa, W.; Sode, K. Novel fluorescent sensing system for alpha-fructosyl amino acids based on engineered fructosyl amino acid binding protein. Biosens. Bioelectron. 2007, 22, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Nibe, E.; Tsugawa, W.; Kojima, K.; Ferri, S.; Sode, K. Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions. Biotechnol. Lett. 2012, 34, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.; Warsinke, A.; Mohwald, H.; Scheller, F.W.; Katterle, M. Development of fructosyl valine binding polymers by covalent imprinting. Biosens. Bioelectron. 2007, 22, 3318–3325. [Google Scholar] [CrossRef] [PubMed]
- Pribyl, J.; Skladal, P. Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples. Biosens. Bioelectron. 2006, 21, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Son, S.U.; Seo, J.-H.; Choi, Y.H.; Lee, S.S. Fabrication of a disposable biochip for measuring percent hemoglobin A1c (%HbA1c). Sens. Actuators A Phys. 2006, 130–131, 267–272. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsukube, S.; Izawa, K.; Okochi, M.; Lim, T.K.; Watanabe, S.; Harada, M.; Matsunaga, T. Electrochemical detection of HbA1c, a marker [correction of maker] for diabetes, using a flow immunoassay system. Biosens. Bioelectron. 2007, 22, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Xu, S.R.; Deng, H.Y.; Wang, X.C. A new electrochemical hba1c biosensor based on flow injection and screen-printed electrode. Int. J. Electrochem. Sci. 2016, 11, 3086–3094. [Google Scholar] [CrossRef]
- Ahn, K.S.; Lee, J.; Park, J.M.; Choi, H.N.; Lee, W.Y. Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. Biosens. Bioelectron. 2016, 75, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.M.; Kim, D.M.; Kim, M.H.; Han, J.Y.; Jung, D.K.; Shim, Y.B. A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample. Biosens. Bioelectron. 2017, 91, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hirst, J.A.; McLellan, J.H.; Price, C.P.; English, E.; Feakins, B.G.; Stevens, R.J.; Farmer, A.J. Performance of point-of-care HbA1c test devices: Implications for use in clinical practice—A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2017, 55, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Saraoglu, H.M.; Selvi, A.O.; Ebeoglu, M.A.; Tasaltin, C. Electronic nose system based on quartz crystal microbalance sensor for blood glucose and HbA1c levels from exhaled breath odor. IEEE Sens. J. 2013, 13, 4229–4235. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Paidi, S.K.; Valdez, T.A.; Zhang, C.; Spegazzini, N.; Dasari, R.R.; Barman, I. Noninvasive monitoring of blood glucose with raman spectroscopy. Acc. Chem. Res. 2017, 50, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Spegazzini, N.; Barman, I.; Dingari, N.C.; Pandey, R.; Soares, J.S.; Ozaki, Y.; Dasari, R.R. Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information. Sci. Rep. 2014, 4, 7013. [Google Scholar] [CrossRef] [PubMed]
Status | HbA1c (%) a | HbA1c (mmol/mol) b |
---|---|---|
Prediabetes | 5.7~6.4 | 39~47 |
Diabetes | ≥ 6.5 | ≥ 48 |
Type of Boronic Acid | Modified Element/Electrode/Label or Redox Indictor | Detection Method | Dynamic Range a (μg/mL or %) | Limit of Detection (μg/mL) | Reference |
---|---|---|---|---|---|
FcBA | ZrO2 NPs/PGE | Amperometric | 6.8–14% | ND | [24] |
DOCA-4-aminothiophenol monolayer/Au | Voltammetric | 0–20% | ND | [25] | |
T3BA | Au/HCF | Impedimetric | 0.1–1 | ND | [27] |
Au/IgG-FITC | Impedimetric | 10–100 | 1 | [28] | |
Au/anti-HbA1c-IgG-FITC | Impedimetric | 10–100 | ND | [29] | |
APBA | glutaraldehyde-SAM Cys/IDAs/HCF | Impedimetric | 0.10–8.36% | 0.024% | [26] |
GO/GCE/HCF | Impedimetric | 10.32–61.92 | ND | [30] | |
glutaraldehyde-ESMs/Screen printed Pt/HCF | Impedimetric | 2.3–14% | 0.19–0.21% | [31,32] | |
pTTBA-Au NPs/SPE | Impedimetric/Amperometric | 0.5–6.0%/0.1–1.5% | 0.052% | [33] | |
PBA-ARS/GCE/HCF | Potentiometric | 5.0–50 | ND | [34] | |
PAPBA NPs-thin film/SPCE/PAPBA | Amperometric | 63–10062 (0.975–156 μM) | ND | [35] | |
PQQ-ERGO/GCE/PQQ | Voltammetric | 9.4–65.8 | 1.25 | [36] | |
SAM DTBA/Au | SPR | 0.43–3.49 | 0.1 | [37] | |
FPBA | SAM cystamine/Au-Si/FcM & GOx | Voltammetric | 4.5–15% | ND | [38] |
poly(amidoamine) G4 dendrimer/Au/FcM & GOx | Voltammetric | 2.5–15% | ND | [39] |
Types | Modified Element/Electrode/Label or Redox Indictor | Detection Method | Dymamic Range (μg/mL) | Reference |
---|---|---|---|---|
Immobilized Hbs | DOCA/Au/FcBA | Voltammetric | ND | [40] |
Hp/cellulose membrane or microtiter/TMB & anti IgG-GOx | Amperometric | 0–25% (7.8–39 nM) | [41] | |
Competitive inhibition | GPP/microtiter plate/TMB & anti IgG-GOx | Photometric | 1.5–10 (1 nM) | [42] |
Oligo(phenylethynylene) MW-FDMA-GPP/GC/FDMA | Amperometric | 4.5–15.1% | [43] | |
Au NPs -FDMA-GPP/GCE/FDMA | Amperometric | 4.6–15.1% | [44] | |
Au NPs-GPP/GCE/Ru(NH3)63+/2+ | Impedimetric | 0–23.3% | [45] | |
Immobilized anti-HbA1c Antibody | SAM 3-MPA/Au/HCF | Voltammetric | 7.5–20 | [46] |
Ppy-Au NPs /Au/PPy | Potentiometric | 4–18 | [47] | |
SAM 1,6-hexanedithiol Au NPs/Au/HCF | Potentiometric | 4–24 | [48] | |
mixed SAMs/Au/HCF | Potentiometric | ND | [49] | |
mixed SAMs wrapped nano-spheres array/Au/HCF | Potentiometric | 0.050–0.1705 | [49,50,51,52] | |
seed mediated growth nano-gold/Au/HCF | Potentiometric | 0.00167–0.07214 | [52] | |
Protein A/laser ablated Au electrode/anti HbA1c-QDs | Optic-electrochemical | ND | [53] |
Type | Modified Element/Electrode/Label or Redox Indictor | Detection Method | Dynamic Range (mM) | Limit of Detection (uM) | Applied Potient (V) | Reference |
---|---|---|---|---|---|---|
Immobilized FAO | PVA-SbQ/Pt | Amperometric | 0.2–10 | 200 | 0.6 | [54] |
Ir NPs/Carbon | Amperometric | 0–0.5 | ND | 0.25 | [55] | |
Fe3O4 NPs/Au/HCF | Amperometric | 0.1–2 | 100 | ND | [56] | |
ZnO NPs-Ppy/Au/HCF | Amperometric | 0.1–3 | 100 | ND | [57] | |
Au NPs-GNs/FTO Glass Plate | Impedimetric | 0.0003–2.0 | 0.2 | 0.2 | [58] | |
MIC | PVI/CPE/m-PMS | Amperometric | 0.02–0.7 | 20 | 0.1 | [59] |
MIC/CPE/m-PMS | Amperometric | 0.2–0.8 | ND | ND | [60] | |
MIC-Allylamine/ND/m-PMS | Amperometric | ND | ND | 0.1 | [61] | |
MIC/Au/m-PMS | Amperometric | 0.05–0.6 | ND | ND | [62] | |
MIP | Thermometric | 0.25–5.0 | ND | ND | [63] | |
Non enzymatic | None/GCPE/ITO glass | Amperometric | 0–1.0 | ND | 1 | [64] |
None/GCE/FcBA | Amperometric | 0.1–4.0 | 500 | 0.1 | [65] |
Biosensors | Detection Method | Dynamic Range (μg/mL) | Ref. | |||
---|---|---|---|---|---|---|
HbA1c/HbA0 | Electrode | Label/Redox Indictor | HbA1c/HbA0 | HbA1c | HbA0 | |
ESMs-APBA/Hp-ESMs | SPCE | HCF | Impedimetric | 2.3–14% | 5000–200,000 | [32] |
APBA-PQQ-ERGO/none | GC | PQQ | Voltammetric/Photometric | 9.4–65.8 | 92.5 | [36] |
DOCA-4-aminothiophenol monolayer/none | Au | FcBA or anti-HbA1c Ab | Voltammetric/Piezoelectric | 0–20% | ND | [25,40] |
mixed SAMs wrapped nano-spheres array-anti-HbA1c/anti-HbA0 Ab | FET | HCF | Potentiometric | 0.05–0.1705 | 0.167–0.570 | [51] |
ABPA-mercaptoundecanoic acid/none | Au | ND | Piezoelectric/Photometric | 3–11% 50–2000 | 10–90 | [69] |
m-APBA agarose beads/none | IDAs | HCF | Electrochemical | ND | ND | [70] |
APBA-column/none | GC | Ferrocene/FC-Ab | Amperometric | 4–12.6% | 0–500 | [71] |
APBA/sol-gel film | RVC/SPE | ND | Amperometric | 200–12,000 | 20,000–200,000 | [72] |
carboxy-EG6-undecanethiol-APBA/11-amino-1-undecanethiol | Au | Luminol/H2O2 | Chemiluminescence | 2.5–17% 2–80 | 50–200 | [73] |
MWCNT-pTTBA-TBO & aptamer/TBO | SPCE | TBO | Amperometric | 0.387–484 | 6.45–645 | [74] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Yi, J. Current Status of HbA1c Biosensors. Sensors 2017, 17, 1798. https://doi.org/10.3390/s17081798
Lin H, Yi J. Current Status of HbA1c Biosensors. Sensors. 2017; 17(8):1798. https://doi.org/10.3390/s17081798
Chicago/Turabian StyleLin, Hua, and Jun Yi. 2017. "Current Status of HbA1c Biosensors" Sensors 17, no. 8: 1798. https://doi.org/10.3390/s17081798
APA StyleLin, H., & Yi, J. (2017). Current Status of HbA1c Biosensors. Sensors, 17(8), 1798. https://doi.org/10.3390/s17081798