Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps
Abstract
:1. Introduction
2. Experiments
2.1. APD Epitaxial Deposition and Characterization
2.2. APD Device Fabrication and Characterization
2.3. Electric Field Profile Calculation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ong, D.S.G.; Ng, J.S.; Hayat, M.M.; Sun, P.; David, J.P.R. Optimization of InP APDs for high-speed lightwave systems. J. Lightw. Technol. 2009, 27, 3294–3302. [Google Scholar] [CrossRef]
- Nakajima, F.; Nada, M.; Yoshimatsu, T. High-speed avalanche photodiode and high-sensitivity receiver optical subassembly for 100-Gb/s ethernet. J. Lightw. Technol. 2016, 34, 243–248. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent advances in avalanche photodiodes. J. Lightw. Technol. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Ishimura, E.; Yagyu, E. High sensitivity 2.5/10 Gbps InAlAs avalanche photodiodes. Mitsubishi Electr. Adv. 2009, 127, 17–19. [Google Scholar]
- Buckman, L.A.; Lemoff, B.E.; Schmit, A.J.; Tella, R.P.; Gong, W. Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks. IEEE Photonics Technol. Lett. 2002, 14, 702–704. [Google Scholar] [CrossRef]
- De Luces Fortes, D.N.; Pontes, M.J.; Giraldi, M.T.M.R. Upgrading the transmission capacity of local area networks by improving the receiver performance. In Proceedings of the SPIE, Strasbourg, France, 3–4 April 2006; p. 619319. [Google Scholar] [CrossRef]
- Fan, S.-H.; Chien, H.-C.; Chowdhury, A.; Chang, G.-K. Spectrally efficient 60-GHz xy-MIMO data transport over a radio-over-fiber system for gigabit wireless local area networks. In Proceedings of the 53rd IEEE Global Communications Conference, Miami, FL, USA, 6–10 December 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Poggiolini, P.; Bosco, G.; Benlachtar, Y.; Savory, S.J.; Bayvel, P.; Killey, R.I.; Prat, J. Long-haul 10 Gbit/s linear and non-linear IMDD transmission over uncompensated standard fiber using a SQRT-metric MLSE receiver. Opt. Express 2008, 16, 12919–12936. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Abdullah, M.F.L.; Chowdhry, B.S.; Shah, N.S.M. A Novel Signal regeneration technique for high speed DPSK communication systems. Wirel. Pers. Commun. 2017, 96, 3249–3273. [Google Scholar] [CrossRef]
- Czuba, K.; Jurenczyk, J.; Kaniewski, J. A study of InGaAs/InAlAs/InP avalanche photodiode. Solid-State Electron. 2015, 104, 109–115. [Google Scholar] [CrossRef]
- Li, B.; Yang, H.-W.; Gui, Q.; Yang, X.-H.; Wang, J.; Wang, X.-P.; Liu, S.-Q.; Han, Q. Ultralow dark current, high responsivity and thin multiplication region in InGaAs/InP avalanche photodiodes. Chin. Phys. Lett. 2012, 29, 118503. [Google Scholar] [CrossRef]
- Zhao, Y.; He, S. The experimental investigation on dark current for InGaAs-InP avalanche photodiodes. Microelectron. Eng. 2012, 98, 19–23. [Google Scholar] [CrossRef]
- Hwang, S.; Shim, J.; Yoo, K. A 10-Gb/s planar InGaAs/lnP avalanche photodiode with a thin multiplication layer fabricated by using recess-etching and single-diffusion processes. J. Korean Phys. Soc. 2006, 49, 253–260. [Google Scholar]
- Kleinow, P.; Rutz, F.; Aidam, R.; Bronner, W.; Heussen, H.; Walther, M. Charge-layer design considerations in SAGCM InGaAs/InAlAs avalanche photodiodes. Phys. Status Solidi A-Appl. Mat. 2016, 213, 925–929. [Google Scholar] [CrossRef]
- Yoon, K.H.; Shin, M.H.; Park, C.Y.; Yun, I.; Kim, S.J. Edge breakdown suppression of 10 Gbps avalanche photodiode. J. Korean Phys. Soc. 2004, 45, S936–S940. [Google Scholar]
- Tarof, L.E. Planar InP-InGaAs avalanche photodetectors with n-multiplication layer exhibiting a very high gain-bandwidth product. IEEE Photonics Technol. Lett. 1990, 2, 643–646. [Google Scholar] [CrossRef]
- Rouvié, A.; Carpentier, D.; Lagay, N.; Décobert, J.; Pommereau, F.; Achouche, M. High gain × bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes. IEEE Photonics Technol. Lett. 2008, 20, 455–457. [Google Scholar] [CrossRef]
- Ishimura, E.; Yagyu, E.; Nakaji, M.; Ihara, S.; Yoshiara, K.; Aoyagi, T.; Tokuda, Y.; Ishikawa, T. Degradation mode analysis on highly reliable guardring-free planar InAlAs avalanche photodiodes. J. Lightw. Technol. 2007, 25, 3686–3693. [Google Scholar] [CrossRef]
- Yagyu, E.; Ishimura, E.; Nakaji, M.; Ihara, S.; Mikami, Y.; Itamoto, H.; Aoyagi, T.; Yoshiara, K.; Tokuda, Y. Design and characteristics of guardring-free planar AlInAs avalanche photodiodes. J. Lightw. Technol. 2009, 27, 1011–1017. [Google Scholar] [CrossRef]
- Burm, J.; Choi, J.Y.; Cho, S.R.; Kim, M.D.; Yang, S.K.; Baek, J.M.; Rhee, D.Y.; Jeon, B.O.; Kang, H.Y.; Jang, D.H. Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications. IEEE Photonics Technol. Lett. 2004, 16, 1721–1723. [Google Scholar] [CrossRef]
- Hyun, K.-S.; Paek, Y.; Kwon, Y.-H.; Hwang, S.; Shim, J.; Ahn, S.J. Pre-breakdown suppression in planar InP/InGaAs avalanche photodiode using deep floating guard ring. Appl. Phys. Lett. 2004, 85, 5547–5549. [Google Scholar] [CrossRef]
- Wei, J.; Dries, J.C.; Wang, H.; Lange, M.L.; Olsen, G.H.; Forrest, S.R. Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes. IEEE Photonics Technol. Lett. 2002, 14, 977–979. [Google Scholar] [CrossRef]
- Vasileuski, Y.; Malyshev, S.; Chizh, A. Design considerations for guardring-free planar InGaAs/InP avalanche photodiode. Opt. Quantum Electron. 2008, 40, 1247–1253. [Google Scholar] [CrossRef]
- Yue, A.-W.; Wang, R.-F.; Xiong, B.; Shi, J. Fabrication of a 10 Gb/s InGaAs/InP avalanche photodiode with an AlGaInAs/InP distributed bragg reflector. Chin. Phys. Lett. 2013, 30, 038501. [Google Scholar] [CrossRef]
- Kleinow, P.; Rutz, F.; Aidam, R.; Bronner, W.; Heussen, H.; Walther, M. Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes. Infrared Phys. Technol. 2015, 71, 298–302. [Google Scholar] [CrossRef]
- Hyun, K.S.; Park, C.Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. J. Appl. Phys. 1997, 81, 974–984. [Google Scholar] [CrossRef]
Layer Name | Epitaxial Layer | Thickness (µm) | Concentration (cm−3) |
---|---|---|---|
Contact | n−-InGaAsP | 0.1 | undoped |
Multiplication | n−-InP | 0.35 | undoped |
Charge | n+-InP | 0.15 | <5 × 1017 |
Grading | n−-InGaAsP × 3 | 0.03 × 3 | undoped |
Absorption | n−-InGaAs | 1.2 | <5 × 1015 |
Buffer | n+-InP | 1 | 5 × 1017 |
Substrate | n+-InP | 350 | 5 × 1018 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-J.; Ho, W.-J.; Chiang, C.-C.; Teng, C.-J.; Yu, C.-C.; Li, Y.-C. Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps. Sensors 2018, 18, 2800. https://doi.org/10.3390/s18092800
Liu J-J, Ho W-J, Chiang C-C, Teng C-J, Yu C-C, Li Y-C. Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps. Sensors. 2018; 18(9):2800. https://doi.org/10.3390/s18092800
Chicago/Turabian StyleLiu, Jheng-Jie, Wen-Jeng Ho, Cho-Chun Chiang, Chi-Jen Teng, Chia-Chun Yu, and Yen-Chu Li. 2018. "Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps" Sensors 18, no. 9: 2800. https://doi.org/10.3390/s18092800
APA StyleLiu, J. -J., Ho, W. -J., Chiang, C. -C., Teng, C. -J., Yu, C. -C., & Li, Y. -C. (2018). Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps. Sensors, 18(9), 2800. https://doi.org/10.3390/s18092800