Reliability and Validity of Non-invasive Blood Pressure Measurement System Using Three-Axis Tactile Force Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setting
2.2. Subjects
2.3. Procedure
2.4. Signal Acquisition and Post-Processing
2.5. Statistical Analysis
3. Results
3.1. Linear Regression Analysis
3.2. Bland-Altman Analysis
3.3. Intraclass Correlation Coefficient
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saugel, B.; Dueck, R.; Wagner, J.Y. Measurement of blood pressure. Best Prac. Res. Clin. Anaesth. 2014, 28, 309–322. [Google Scholar] [CrossRef]
- Velik, R. An objective review of the technological developments for radial pulse diagnosis in traditional Chinese medicine. Eur. J. Integr. Med. 2015, 7, 321–331. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals Part 1: Blood Pressure Measurement in Humans A Statement for Professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [PubMed]
- Chung, E.; Chen, G.; Alexander, B.; Cannesson, M. Non-invasive continuous blood pressure monitoring: A review of current applications. Front. Med. 2013, 7, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, H.; Zheng, J.; Mao, B.; Zhu, S.; Feng, J. Continuous blood pressure monitoring via non-invasive radial artery applanation tonometry and invasive arterial catheter demonstrates good agreement in patients undergoing colon carcinoma surgery. J. Clin. Monit. Comput. 2017, 31, 1189–1195. [Google Scholar] [CrossRef]
- Adji, A.; Hirata, K.; O’Rourke, M.F. Clinical use of indices determined non-invasively from the radial and carotid pressure waveforms. Blood Press. Monit. 2006, 11, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.R.; Stepanek, J.; Cevette, M.; Covalciuc, M.; Todd Hurst, R.; Jamil Tajik, A. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveforms? Mayo Clin. Proc. 2010, 85, 460–472. [Google Scholar] [CrossRef]
- Meidert, A.S.; Huber, W.; Hapfelmeier, A.; Schöfthaler, M.; Müller, J.N.; Langwieser, N.; Wagner, J.Y.; Schmid, R.M.; Saugel, B. Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome. J. Crit. Care 2013, 28, 908–912. [Google Scholar] [CrossRef]
- Dueck, R.; Goedje, O.; Clopton, P. Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J. Clin. Monit. Comput. 2012, 26, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Ghosh, S.; Gupta, B.; Chakravarty, T. A Literature Review on Current and Proposed Technologies of Noninvasive Blood Pressure Measurement. Telemed. J. E Health 2018, 24, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, A.M.; Anthony, B.W. Quantitative Elastography and its Application to Blood Pressure Estimation: Theoretical and Experimental Results. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 1136–1139. [Google Scholar]
- Zakrzewski, A.M.; Anthony, B.W. Noninvasive Blood Pressure Estimating Using Ultrasound and Simple Finite Element Models. IEEE Trans. Biomed. Eng. 2018, 65, 2011–2022. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Pietrangelo, S.J.; Lee, H.S.; Sodini, C.G. Noninvasive Arterial Blood Pressure Waveform Monitoring Using Two-Element Ultrasound System. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Plante, T.B.; Urrea, B.; MacFarlane, Z.T.; Blumenthal, R.S.; Miller, E.R., 3rd; Appel, L.J.; Martin, S.S. Validation of the Instant Blood Pressure Smartphone App. JAMA Intern. Med. 2016, 176, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Slapničar, G.; Luštrek, M.; Marinko, M. Continuous Blood Pressure Estimation from PPG Signal. Int. J. Comput. Inform. 2018, 42, 33–42. [Google Scholar]
- Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive subject study. Biomed. Eng. Online 2017, 16, 10. [Google Scholar] [CrossRef]
- Noh, S.; Yoon, C.; Hyun, E. Ferroelectric film based patch-type sensor for continuous blood pressure monitoring. Electron. Lett. 2014, 50, 143–144. [Google Scholar] [CrossRef]
- Foldi, S.; Horvath, T.; Zieger, F.; Sótonyi, P.; Cserey, G. A novel non-invasive blood pressure waveform measuring system compared to Millar applanation tonometry. J. Clin. Monit. Comput. 2017, 32, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, K.U.; Sedivy, J.; Salo, T.; Hagleitner, C.; Vancura, T.; Baltes, H. A CMOS-Based Tactile Sensor for Continuous Blood Pressure Monitoring. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, Munich, Germany, 7–11 March 2015. [Google Scholar] [CrossRef]
- Tar, Á.; Cserey, G. Development of a low cost 3d optical compliant tactile force sensor. In Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary, 3–7 July 2011. [Google Scholar] [CrossRef]
- Onrobot Ltd. 3D Force Sensor. 2017. Available online: https://onrobot.com/products/omd-force-sensor/ (accessed on 12 December 2018).
- Letcher, T.; Waytashek, M. Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing, Montreal, QC, Canada, 14–20 November 2014; p. V02AT02A014. [Google Scholar]
- Nahiyan, K.M.T.; Amin, A.A. Removal of ECG Baseline Wander using Savitzky-Golay Filter Based Method. Bangladesh J. Med. Sci. 2015. [Google Scholar] [CrossRef]
- Pinto, J.R.; Cardoso, J.S.; Lourenço, A.; Carreiras, C. Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel. Sensors 2017, 17, 2228. [Google Scholar] [CrossRef]
- Kong, K.A. Statistical Methods: Reliability Assessment and Method Comparison. EWHA Med. J. 2017, 40, 9–16. [Google Scholar] [CrossRef]
- Bartlett, J.W.; Frost, C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 2008, 31, 466–475. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Applying the right statistics: Analyses of measurement studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef]
- Kim, C.H.; Chung, C.K.; Hong, H.S.; Kim, E.H.; Kim, M.J.; Park, B.J. Validation of a simple computerized tool for measuring spinal and pelvic parameters. J. Neurosurg. Spine 2012, 16, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, M.T.; Konala, P.; Amsler, F. The position and orientation of total knee replacement components: A comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J. Bone Joint Surg. Br. 2011, 93, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
R2 | p Value (F-test) | Standardized Coefficient | ||
---|---|---|---|---|
Short-term experiment | ||||
Intrapersonal results | Mean value and mean BP | 0.970 | 0 | 0.985 |
Peak value and systolic BP | 0.995 | 0 | 0.997 | |
Trough value and diastolic BP | 0.913 | 0 | 0.956 | |
Interpersonal results | 0.977 | 0 | 0.988 | |
Long-term experiment | ||||
Intrapersonal results | Mean value and mean BP | 0.945 | 0 | 0.972 |
Peak value and systolic BP | 0.982 | 0 | 0.991 | |
Trough value and diastolic BP | 0.851 | 0 | 0.923 | |
Interpersonal results | 0.978 | 0 | 0.963 |
Differences in Systolic BP | Difference in Diastolic BP | ||
---|---|---|---|
Short-term experiment | |||
The raw numerical value of the sensor | Pearson correlation coefficient | 0.051 | 0.023 |
p value, 2-tailed | 0.790 | 0.904 | |
Wrist circumference | Pearson correlation coefficient | 0.063 | 0.010 |
p value, 2-tailed | 0.741 | 0.958 | |
Long-term experiment | |||
The raw numerical value of the sensor | Pearson correlation coefficient | 0.248 | 0.349 |
p value, 2-tailed | 0.489 | 0.323 | |
Wrist circumference | Pearson correlation coefficient | 0.122 | 0.234 |
p value, 2-tailed | 0.737 | 0.515 |
t Value | Degree of Freedom + | p Value, 2-Tailed | Mean Difference | 95% Confidence Interval of Difference | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Short-term experiment | −0.074 | 359 | 0.941 | −0.014 | −0.382 | 0.354 |
Long-term experiment | −0.083 | 139 | 0.934 | −0.036 | −0.886 | 0.814 |
Mean Value (Bias) | Standard Deviation of Bias | Standard Error of Bias | |
---|---|---|---|
Short-term experiment | −0.014 | 3.548 | 0.187 |
Long-term experiment | 0.036 | 5.088 | 0.430 |
R2 | p Value (F-test) | Standardized Coefficient | |
---|---|---|---|
Short-term experiment | 0.077 | 0.143 | 0.077 |
Long-term experiment | 0.109 | 0.200 | 0.109 |
Intraclass Correlation (95% Confidence Interval) | F-test | |||
---|---|---|---|---|
F Value | Degree of Freedom | p Value | ||
Short-term experiment | ||||
Single Measures | 0.988 (0.986~0.991) | 170.62 | 359 | 0.000 |
Average Measures | 0.994 (0.993~0.995) | 170.62 | 359 | 0.000 |
Long-term experiment | ||||
Single Measures | 0.977 (0.969~0.984) | 87.664 | 139 | 0.000 |
Average Measures | 0.989 (0.984~0.992) | 87.664 | 139 | 0.000 |
Systolic BP | Diastolic BP | Mean arterial BP | ||||
---|---|---|---|---|---|---|
Bias | Standard Deviation | Bias | Standard Deviation | Bias | Standard Deviation | |
Short-term experiment | −0.010 | 5.419 | 0.062 | 4.772 | 0.036 | 4.610 |
Long-term experiment | −0.021 | 3.338 | −0.006 | 3.710 | 0.014 | 2.924 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-Y.; Ahn, J.-E.; Cserey, G.; Lee, H.-Y.; Seo, J.-M. Reliability and Validity of Non-invasive Blood Pressure Measurement System Using Three-Axis Tactile Force Sensor. Sensors 2019, 19, 1744. https://doi.org/10.3390/s19071744
Yoo S-Y, Ahn J-E, Cserey G, Lee H-Y, Seo J-M. Reliability and Validity of Non-invasive Blood Pressure Measurement System Using Three-Axis Tactile Force Sensor. Sensors. 2019; 19(7):1744. https://doi.org/10.3390/s19071744
Chicago/Turabian StyleYoo, Sun-Young, Ji-Eun Ahn, György Cserey, Hae-Young Lee, and Jong-Mo Seo. 2019. "Reliability and Validity of Non-invasive Blood Pressure Measurement System Using Three-Axis Tactile Force Sensor" Sensors 19, no. 7: 1744. https://doi.org/10.3390/s19071744
APA StyleYoo, S. -Y., Ahn, J. -E., Cserey, G., Lee, H. -Y., & Seo, J. -M. (2019). Reliability and Validity of Non-invasive Blood Pressure Measurement System Using Three-Axis Tactile Force Sensor. Sensors, 19(7), 1744. https://doi.org/10.3390/s19071744