Improving Census Transform by High-Pass with Haar Wavelet Transform and Edge Detection
Abstract
:1. Introduction
2. Related Methods
2.1. The CT Algorithm
2.2. The Haar Wavelet
2.3. Edge Detection
3. Proposed Methods
3.1. Census Transform with Haar Wavelet (CTHW)
3.2. Adaptive Window Census Transform (AWCT)
3.3. Adaptive Window Sparse Census Transform (AWSCT)
4. Experiments and Results
4.1. Results of CTHW
4.2. Results of AWCT
4.3. Results of AWSCT
4.4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.; Zhang, M.; Guo, L.; Zhao, Y. Stereo Vision Based Obstacle Avoidance Path-Planning for Cross-Country Intelligent Vehicle. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009. [Google Scholar]
- Hou, A.-L.; Cui, X.; Geng, Y.; Yuan, W.-J.; Hou, J. Measurement of Safe Driving Distance Based on Stereo Vision. In Proceedings of the Sixth International Conference on Image and Graphics, Hefei, China, 12–15 August 2011. [Google Scholar]
- Kheng, E.S.; Hassan, A.H.A.; Ranjbaran, A. Stereo Vision with 3D Coordinates for Robot Arm Application Guide. In Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Petaling Jaya, Malaysia, 20–21 November 2010. [Google Scholar]
- Kanellakis, C.; Nikolakopoulos, G. Guidance for autonomous aerial manipulator using stereo vision. J. Intell. Robot. Syst. 2019. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wang, C.; Liu, R.; Liang, G.; Zhang, H.; Rehman, S.U. Moving object localization based on UHF RFID phase and laser clustering. Sensors 2018, 18, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaleghi, B.; Ahuja, S.; Wu, Q.M.J. An Improved Real-Time Miniaturized Embedded Stereo Vision System (MESVS-II). In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 21–28 June 2008. [Google Scholar]
- Holzmann, C.; Hochgatterer, M. Measuring Distance with Mobile Phones Using Single-Camera Stereovision. In Proceedings of the 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012. [Google Scholar]
- Domínguez-Morales, M.; Cerezuela-Escudero, E.; Jiménez-Fernández, A.; Paz-Vicente, R.; Font-Calvo, J.L.; Iñigo-Blasco, P.; Linares-Barranco, A.; Jiménez-Moreno, G. Image Matching Algorithms in Stereo Vision Using Address-Event-Representation: A Theoretical Study and Evaluation of the Different Algorithms. In Proceedings of the International Conference on Signal Processing and Multimedia Applications, Seville, Spain, 18–21 July 2011. [Google Scholar]
- Domínguez-Morales, M.; Domínguez-MoralesOrcID, J.P.; Jiménez-FernándezOrcID, A.; Linares-Barranco, A.; Jiménez-Moreno, G. Stereo Matching in Address-Event-Representation (AER) Bio-Inspired Binocular Systems in a Field-Programmable Gate Array (FPGA). Electronics 2019, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Morales, M.; Jiménez-Fernández, A.; Paz-Vicente, R.; Jiménez, G.; Linares-Barran, A. Live Demonstration: On the Distance Estimation of Moving Targets with a Stereo-Vision AER System. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems, Seoul, Korea, 20–23 May 2012. [Google Scholar]
- Burschka, D.; Brown, M.Z.; Hager, G.D. Advances in Computational Stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 993–1008. [Google Scholar]
- Liaw, J.-J.; Chen, K.-L.; Huang, M.-S. Using Different Baselines to Improve Image Depth Measurement Accuracy. In Proceedings of the International Conference on Engineering & Technology, Computer, Basic & Applied Sciences, Osaka, Japan, 24–25 January 2017. [Google Scholar]
- Ogale, A.S.; Aloimonos, Y. Shape and the stereo correspondence problem. Int. J. Comput. Vis. 2005, 65, 147–162. [Google Scholar] [CrossRef]
- Juang, C.-F.; Chen, G.-C.; Liang, C.-W.; Lee, D. Stereo-camera-based object detection using fuzzy color histograms and a fuzzy classifier with depth and shape estimations. Appl. Soft Comput. 2016, 46, 753–766. [Google Scholar] [CrossRef]
- Zabih, R.; Woodfill, J. Non-parametric local transforms for computing visual correspondence. Comput. Vis.-Eccv’94 2005, 801, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-C.; Liaw, J.-J.; Chu, H.-C. Modified Census Transform Using Haar Wavelet Transform. In Proceedings of the International Conference on Applied System Innovation, Osaka, Japan, 22–27 May 2015. [Google Scholar]
- Huang, S.-C. Improved Census Transform’s Disparity Map by Using Edge Information. Master’s Thesis, Chaoyang University of Technology, Taichung, Taiwan, 2016. [Google Scholar]
- Rahnama, O.; Frost, D.; Miksik, O.; Torr, P.H.S. Real-time dense stereo matching with ELAS on FPGA-accelerated embedded devices. IEEE Robot. Autom. Lett. 2018, 3, 2008–2015. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.; Shah, A.; Waqas, A.; Abubakar, A.; Kamran, S.; Zaidi, S.B. Image segmentation methods and edge detection: An application to knee joint articular cartilage edge detection. J. Theor. Appl. Inf. Technol. 2015, 71, 87–96. [Google Scholar]
- Jing, Y.; An, J.; Li, L. The Edge Detection of Oil Spills Image Using Self-Adaptive Dynamic Block Threshold Algorithm Based on Non-Maximal Suppression. In Proceedings of the 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009. [Google Scholar]
- Rashedi, E.; Nezamabadi-pour, H. A hierarchical algorithm for vehicle license plate localization. Multimed. Tools Appl. 2018, 77, 2771–2790. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, N.; Lin, Y. Remote Pedestrian Detection Algorithm Based on Edge Information Input CNN. In Proceedings of the 3rd High Performance Computing and Cluster Technologies Conference, Guangzhou, China, 22–24 June 2019. [Google Scholar]
- Pansare, J.R.; Ingle, M. Vision-Based Approach for American Sign Language Recognition Using Edge Orientation Histogram. In Proceedings of the International Conference on Image, Vision and Computing, Portsmouth, UK, 3–5 August 2016. [Google Scholar]
- Ko, J.; Ho, Y.-S. Stereo Matching Using Census Transform of Adaptive Window Sizes with Gradient Images. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju Island, Korea, 13–16 December 2016. [Google Scholar]
- Dinh, V.Q.; Nguyen, D.D.; Nguyen, V.D.; Jeon, J.W. Local Stereo Matching Using an Variable Window, Census Transform and an Edge-Preserving Filter. In Proceedings of the 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 17–21 October 2012. [Google Scholar]
- Haar, A. Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 1910, 69, 331–371. [Google Scholar] [CrossRef]
- Fife, W.S.; Archibald, J.K. Improved Census Transforms for Resource-Optimized Stereo Vision. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 60–73. [Google Scholar] [CrossRef]
- Froba, B.; Emst, A. Face Detection with the Modified Census Transform. In Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 19 May 2004. [Google Scholar]
- Jo, H.-W.; Moon, B. A Modified Census Transform Using the Representative Intensity Values. In Proceedings of the International SoC Design Conference, Gyungju, Korea, 2–5 November 2015. [Google Scholar]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef] [Green Version]
- Alemohammad, M.; Stround, J.R.; Bosworth, B.T.; Foster, M.A. High-speed all-optical Haar wavelet transform for real-time image compression. Opt. Express 2017, 25, 9802–9811. [Google Scholar] [CrossRef] [PubMed]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Fujimoto, T.R.; Kawasaki, T.; Kitamura, K. Canny-edge-detection/rankine-hugoniot-conditions unified shock sensor for inviscid and viscous flows. J. Comput. Phys. 2019, 396, 264–279. [Google Scholar] [CrossRef]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Scharstein, D.; Hirschmuller, H.; Kiajima, Y.; Krathwohi, G.; Nesic, N.; Wang, X.; Westling, P. High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. In Proceedings of the German Conference on Pattern Recognition, Münster, Germany, 3–5 September 2014. [Google Scholar]
Window Size | 3 × 3 | 5 × 5 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Image Name | CT | CTHW | CT | CTHW | CT | CTHW | CT | CTHW | CT | CTHW | CT | CTHW |
Moebius | 78.75 | 41.95 | 53.97 | 24.17 | 39.35 | 21.33 | 31.72 | 19.85 | 27.34 | 19.36 | 24.66 | 19.40 |
Flowerpots | 79.11 | 51.92 | 67.51 | 39.55 | 59.14 | 36.23 | 53.59 | 35.39 | 49.90 | 34.78 | 47.18 | 34.28 |
Reindeer | 82.84 | 52.41 | 59.88 | 38.22 | 45.58 | 34.17 | 38.55 | 32.50 | 34.28 | 32.10 | 32.23 | 32.70 |
Cloth2 | 71.59 | 46.78 | 43.44 | 29.84 | 31.84 | 26.69 | 26.95 | 25.87 | 24.62 | 25.52 | 23.27 | 25.28 |
Midd1 | 84.97 | 70.29 | 68.38 | 54.44 | 58.33 | 46.47 | 53.21 | 41.88 | 50.12 | 38.82 | 48.17 | 37.10 |
Baby1 | 72.06 | 37.45 | 52.70 | 21.54 | 40.11 | 20.81 | 31.69 | 20.80 | 26.63 | 20.68 | 23.37 | 20.59 |
Image Name | PoBMP of CT (21 × 21) | PoBMP of AWCT | RMS of CT (21 × 21) | RMS of AWCT | Reduction Ratio of Operation |
---|---|---|---|---|---|
Moebius | 20.12 | 20.23 | 34.93 | 34.90 | 6.98% |
Flowerpots | 32.25 | 32.52 | 58.55 | 58.49 | 6.97% |
Reindeer | 29.55 | 29.42 | 47.48 | 47.49 | 6.11% |
Cloth2 | 16.82 | 17.11 | 33.18 | 34.12 | 8.72% |
Midd1 | 43.71 | 43.49 | 49.37 | 49.86 | 3.94% |
Baby1 | 18.64 | 19.17 | 31.57 | 32.02 | 7.72% |
Image Name | PoBMP of SCT (21 × 21) | PoBMP of AWSCT | RMS of SCT (21 × 21) | RMS of AWSCT | Reduction Ratio of Operation |
---|---|---|---|---|---|
Moebius | 25.00 | 25.82 | 38.81 | 39.48 | 6.16% |
Flowerpots | 39.06 | 39.80 | 61.80 | 61.98 | 8.08% |
Reindeer | 34.24 | 34.69 | 51.13 | 51.54 | 7.23% |
Cloth2 | 22.36 | 23.18 | 43.86 | 45.09 | 9.42% |
Midd1 | 48.33 | 48.89 | 52.99 | 53.24 | 5.03% |
Baby1 | 24.89 | 26.24 | 36.49 | 37.33 | 9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaw, J.-J.; Lu, C.-P.; Huang, Y.-F.; Liao, Y.-H.; Huang, S.-C. Improving Census Transform by High-Pass with Haar Wavelet Transform and Edge Detection. Sensors 2020, 20, 2537. https://doi.org/10.3390/s20092537
Liaw J-J, Lu C-P, Huang Y-F, Liao Y-H, Huang S-C. Improving Census Transform by High-Pass with Haar Wavelet Transform and Edge Detection. Sensors. 2020; 20(9):2537. https://doi.org/10.3390/s20092537
Chicago/Turabian StyleLiaw, Jiun-Jian, Chuan-Pin Lu, Yung-Fa Huang, Yu-Hsien Liao, and Shih-Cian Huang. 2020. "Improving Census Transform by High-Pass with Haar Wavelet Transform and Edge Detection" Sensors 20, no. 9: 2537. https://doi.org/10.3390/s20092537
APA StyleLiaw, J. -J., Lu, C. -P., Huang, Y. -F., Liao, Y. -H., & Huang, S. -C. (2020). Improving Census Transform by High-Pass with Haar Wavelet Transform and Edge Detection. Sensors, 20(9), 2537. https://doi.org/10.3390/s20092537