Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift
Abstract
:1. Introduction
2. Process Design for Measuring Gravity Using 85Rb Atoms
3. Implementation of the Compact 85Rb Atom Gravimeter
3.1. The Sensor Head
3.2. The Optical System
3.3. The Electronic System
4. Measures to Improve the Accuracy of the Compact 85Rb AG
4.1. Automatic Tilt Adjustment
4.2. Suppressing the Light Shift
4.3. Suppressing the Crosstalk of Lasers
4.4. Vibration Compensation
4.5. Gravity Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velicogna, I.; Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 2006, 311, 1754. [Google Scholar] [CrossRef] [Green Version]
- Nabighian, M.N.; Ander, M.E.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Pearson, W.C.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E. 75th Anniversary—Historical development of the gravity method in exploration. Geophysics 2005, 70, 63ND. [Google Scholar] [CrossRef] [Green Version]
- Montagner, J.P.; Juhel, K.; Barsuglia, M.; Ampuero, J.P.; Chassande-Mottin, E.; Harms, J.; Whiting, B.; Bernard, P.; Clevede, E.; Lognonne, P. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nat. Commun. 2016, 7, 13349. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.X. Using gravity anomaly matching techniques to implement submarine navigation. Chin. J. Geophys. 2005, 48, 812. [Google Scholar] [CrossRef]
- Kasevich, M.; Chu, S. Measurement of the Gravitational Acceleration of An Atom with A Light-Pulse Atom Interferometer. Appl. Phys. B 1992, 54, 321. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 1999, 400, 849. [Google Scholar] [CrossRef]
- Hu, Z.K.; Sun, B.L.; Duan, X.C.; Zhou, M.K.; Chen, L.L.; Zhan, S.; Zhang, Q.Z.; Luo, J. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A 2013, 88, 043610. [Google Scholar] [CrossRef]
- Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.G.; Müller, J.; Peters, A. Mobile quantum gravity sensor with unprecedented stability. J. Phys. Conf. Ser. 2016, 723, 012050. [Google Scholar] [CrossRef]
- Wu, S.; Feng, J.; Li, C.; Su, D.; Wang, Q.; Hu, R.; Mou, L. The results of 10th International Comparison of Absolute Gravimeters (ICAG-2017). J. Geod. 2021, 95, 63. [Google Scholar] [CrossRef]
- Francis, O.; Baumann, H.; Ullrich, C.; Castelein, S.; Van Camp, M.; Andrade de Sousa, M.; Lima Melhorato, R.; Li, C.; Xu, J.; Su, D.; et al. CCM.G-K2 key comparison. Metrologia 2015, 52, 07009. [Google Scholar] [CrossRef]
- Jiang, Z.; Palinkas, V.; Arias, F.E.; Liard, J.; Merlet, S.; Wilmes, H.; Vitushkin, L.; Robertsson, L.; Tisserand, L.; Dos Santos, F.P.; et al. The 8th International Comparison of Absolute Gravimeters 2009: The First Key Comparison (CCM.G-K1) in the Field of Absolute Gravimetry. Metrologia 2012, 49, 666. [Google Scholar] [CrossRef]
- Charriere, R.; Cadoret, M.; Zahzam, N.; Bidel, Y.; Bresson, A. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A 2012, 85, 013639. [Google Scholar] [CrossRef] [Green Version]
- Malossi, N.; Bodart, Q.; Merlet, S.; Leveque, T.; Landragin, A.; Dos Santos, F.P. Double diffraction in an atomic gravimeter. Phys. Rev. A 2010, 81, 013617. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, S.M.; Hogan, J.M.; Sugarbaker, A.; Johnson, D.M.S.; Kasevich, M.A. Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry. Phys. Rev. Lett. 2013, 111, 083001. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, H.J.; Rakholia, A.V.; Biedermann, G.W. High data-rate atom interferometer for measuring acceleration. Appl. Phys. Lett. 2012, 100, 011106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Mao, D.K.; Luo, Q.; Hu, Z.K.; Chen, L.L.; Zhou, M.K. The self-attraction effect in an atom gravity gradiometer. Metrologia 2020, 57, 045011. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Cui, J.F.; Qi, K.; Deng, X.B.; Zhou, M.K.; Duan, X.C.; Hu, Z.K. On-site calibration of the Raman laser absolute frequency for atom gravimeters. Phys. Rev. A 2018, 97, 063626. [Google Scholar] [CrossRef]
- Zhou, M.K.; Luo, Q.; Chen, L.L.; Duan, X.C.; Hu, Z.K. Observing the effect of wave-front aberrations in an atom interferometer by modulating the diameter of Raman beams. Phys. Rev. A 2016, 93, 043610. [Google Scholar] [CrossRef]
- Menoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci. Rep. 2018, 8, 12300. [Google Scholar] [CrossRef]
- Deng, X.B.; Xu, W.J.; Cheng, Y.; Zhang, J.Y.; Hu, Z.K.; Zhou, M.K. Miniaturized Atom Gravimeter and Its Application. Nav.Control 2022, 21, 66. [Google Scholar]
- Chen, B.; Long, J.; Xie, H.; Li, C.; Chen, L.; Jiang, B.; Chen, S. Portable atomic gravimeter operating in noisy urban environments. Chin. Opt. Lett. 2020, 18, 090201. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Q.; Wang, Z.; Wu, B.; Cheng, B.; Lin, Q. Participation in the absolute gravity comparison with a compact cold atom gravimeter. Chin. Opt. Lett. 2019, 17, 011204. [Google Scholar] [CrossRef]
- Huang, P.-W.; Tang, B.; Chen, X.; Zhong, J.-Q.; Xiong, Z.-Y.; Zhou, L.; Wang, J.; Zhan, M.-S. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters. Metrologia 2019, 56, 045012. [Google Scholar] [CrossRef]
- Wang, S.-K.; Zhao, Y.; Zhuang, W.; Li, T.-C.; Wu, S.-Q.; Feng, J.-Y.; Li, C.-J. Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5X. Metrologia 2018, 55, 360. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 2001, 38, 25. [Google Scholar] [CrossRef]
- Fang, J.; Hu, J.G.; Chen, X.; Zhu, H.R.; Zhou, L.; Zhong, J.Q.; Wang, J.; Zhan, M.S. Realization of a compact one-seed laser system for atom interferometer-based gravimeters. Opt. Express 2018, 26, 1586. [Google Scholar] [CrossRef]
- Louchet-Chauvet, A.; Farah, T.; Bodart, Q.; Clairon, A.; Landragin, A.; Merlet, S.; Santos, F.P.D. The influence of transverse motion within an atomic gravimeter. N. J. Phys. 2011, 13, 065025. [Google Scholar] [CrossRef] [Green Version]
- Carraz, O.; Charriere, R.; Cadoret, M.; Zahzam, N.; Bidel, Y.; Bresson, A. Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation. Phys. Rev. A 2012, 86, 033605. [Google Scholar] [CrossRef] [Green Version]
- Le Gouet, J.; Mehlstaubler, T.E.; Kim, J.; Merlet, S.; Clairon, A.; Landragin, A.; Dos Santos, F.P. Limits to the sensitivity of a low noise compact atomic gravimeter. Appl. Phys. B 2008, 92, 133. [Google Scholar] [CrossRef] [Green Version]
n | m | T (ms) | υ0 (cm/s) |
---|---|---|---|
1 | 1 | 71 | 34.8 |
1 | 2 | 71 | 104.3 |
2 | 2 | 100.4 | 49.2 |
2 | 3 | 100.4 | 98.4 |
3 | 2 | 122.9 | 20.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, G.; Chen, X.; Li, J.; Zhang, D.; He, M.; Wang, W.; Zhou, Y.; Zhong, J.; Tang, B.; Fang, J.; et al. Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift. Sensors 2023, 23, 6115. https://doi.org/10.3390/s23136115
Ge G, Chen X, Li J, Zhang D, He M, Wang W, Zhou Y, Zhong J, Tang B, Fang J, et al. Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift. Sensors. 2023; 23(13):6115. https://doi.org/10.3390/s23136115
Chicago/Turabian StyleGe, Guiguo, Xi Chen, Jinting Li, Danfang Zhang, Meng He, Wenzhang Wang, Yang Zhou, Jiaqi Zhong, Biao Tang, Jie Fang, and et al. 2023. "Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift" Sensors 23, no. 13: 6115. https://doi.org/10.3390/s23136115
APA StyleGe, G., Chen, X., Li, J., Zhang, D., He, M., Wang, W., Zhou, Y., Zhong, J., Tang, B., Fang, J., Wang, J., & Zhan, M. (2023). Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift. Sensors, 23(13), 6115. https://doi.org/10.3390/s23136115