PixRevive: Latent Feature Diffusion Model for Compressed Video Quality Enhancement
Abstract
:1. Introduction
- We propose the first diffusion-model-based video compression restoration network, surpassing the performance limitations of previous neural network methods.
- We design a frequency-domain filling block (FFB), the core idea of which is leveraging the multi-resolution frequency-domain features provided by wavelet transforms to guide detail restoration. It provides more high-frequency knowledge to reconstruct sharp texture details.
- Theoretical analysis reveals domain discrepancies between diffusion models and deep convolutional networks. Direct latent feature fusion may exacerbate these gaps, inducing distortions. To mitigate this, we design a simple yet effective group-wise domain fusion module.
- Extensive experiments and ablation studies validate the superior performance of our proposed technique.
2. Related Work
2.1. Compressed Image/Video Restoration
2.2. Diffusion Models
2.3. Neural Network Combined with Diffusion Model
3. Preliminaries: Diffusion
4. Approach
4.1. ELPNet
4.2. Noise Prediction with Modified Conditional Feature
4.3. Multi-Scale Group-Wise Information Fusion
5. Experiments
5.1. Dataset
5.2. Experiment Settings
5.3. Comparisons with Previous Algorithms
5.3.1. Qualitative Visual Effect Comparison
5.3.2. Quality Fluctuation
5.3.3. Rate–Distortion Performance
5.3.4. Overall Performance
5.4. Ablation Study
5.4.1. The effect of ELPNet and fusion in participation
5.4.2. The significance of DWT
5.4.3. Addition of loss function
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rijkse, K. H.263: Video coding for low-bit-rate communication. IEEE Commun. Mag. 1996, 34, 42–45. [Google Scholar] [CrossRef]
- ITU Telecom. Advanced Video Coding for Generic Audiovisual Services. ITU-T Recommendation H. 264. 2003. Available online: https://www.itu.int/rec/T-REC-H.264 (accessed on 15 January 2024).
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Zeng, K.; Zhao, T.; Rehman, A.; Wang, Z. Characterizing perceptual artifacts in compressed video streams. In Proceedings of the SPIE Proceedings, Human Vision and Electronic Imaging XIX, San Francisco, CA, USA, 2–6 February 2014. [Google Scholar] [CrossRef]
- Deng, J.; Wang, L.; Pu, S.; Zhuo, C. Spatio-Temporal Deformable Convolution for Compressed Video Quality Enhancement. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 10696–10703. [Google Scholar] [CrossRef]
- Yeo, H.; Jung, Y.; Kim, J.; Shin, J.; Han, D. Neural adaptive content-aware internet video delivery. In Operating Systems Design and Implementation, Operating Systems Design and Implementation; OmniScriptum S.R.L.: London, UK, 2018. [Google Scholar]
- Yin, X.; Jindal, A.; Sekar, V.; Sinopoli, B. A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 17–21 August 2015. [Google Scholar] [CrossRef]
- Foi, A.; Katkovnik, V.; Egiazarian, K. Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images. IEEE Trans. Image Process. 2007, 6, 1395–1411. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, R.; Fan, X.; Ma, S.; Gao, W. Compression Artifact Reduction by Overlapped-Block Transform Coefficient Estimation With Block Similarity. IEEE Trans. Image Process. 2013, 22, 4613–4626. [Google Scholar] [CrossRef]
- Yang, R.; Xu, M.; Liu, T.; Wang, Z.; Guan, Z. Enhancing quality for HEVC compressed videos. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2039–2054. [Google Scholar] [CrossRef]
- Guan, Z.; Xing, Q.; Xu, M.; Yang, R.; Liu, T.; Wang, Z. MFQE 2.0: A new approach for multi-frame quality enhancement on compressed video. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xu, Y.; Zhou, S. Recursive fusion and deformable spatiotemporal attention for video compression artifact reduction. In Proceedings of the 29th ACM international conference on multimedia, Virtual Event, China, 20–24 October 2021; pp. 5646–5654. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Virtual Conference, 11–17 October 2021. [Google Scholar] [CrossRef]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient Transformer for High-Resolution Image Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Luo, W.; Gao, L.; Zhang, W. Video compression artifact reduction by fusing motion compensation and global context in a swin-CNN based parallel architecture. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 3489–3497. [Google Scholar]
- Yu, L.; Chang, W.; Wu, S.; Gabbouj, M. End-to-End Transformer for Compressed Video Quality Enhancement. In IEEE Transactions on Broadcasting; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Chan, K.C.; Wang, X.; Yu, K.; Dong, C.; Loy, C.C. Basicvsr: The search for essential components in video super-resolution and beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4947–4956. [Google Scholar]
- Chan, K.C.; Zhou, S.; Xu, X.; Loy, C.C. Basicvsr++: Improving video super-resolution with enhanced propagation and alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5972–5981. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion Models Beat GANs on Image Synthesis. Neural Inf. Process. Syst. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Ho, J.; Saharia, C.; Chan, W.; Fleet, D.J.; Norouzi, M.; Salimans, T. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 2022, 23, 2249–2281. [Google Scholar]
- Liu, D.; Li, Y.; Lin, J.; Li, H.; Wu, F. Deep learning-based video coding: A review and a case study. ACM Comput. Surv. (CSUR) 2020, 53, 1–35. [Google Scholar] [CrossRef]
- Dong, C.; Deng, Y.; Loy, C.; Tang, X. Compression Artifacts Reduction by a Deep Convolutional Network. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, D.; Wu, F. A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding. In MultiMedia Modeling, Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 28–39. [Google Scholar] [CrossRef]
- He, X.; Hu, Q.; Zhang, X.; Zhang, C.; Lin, W.; Han, X. Enhancing HEVC compressed videos with a partition-masked convolutional neural network. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; IEEE: New York, NY, USA, 2018; pp. 216–220. [Google Scholar]
- Ding, D.; Kong, L.; Chen, G.; Liu, Z.; Fang, Y. A Switchable Deep Learning Approach for In-loop Filtering in Video Coding. IEEE Transactions on Circuits and Systems for Video Technology; IEEE: New York, NY, USA, 2020; p. 1. [Google Scholar] [CrossRef]
- Xue, T.; Chen, B.; Wu, J.; Wei, D.; Freeman, W.T. Video Enhancement with Task-Oriented Flow. Int. J. Comput. Vis. 2019, 127, 1106–1125. [Google Scholar] [CrossRef]
- Yang, R.; Sun, X.; Xu, M.; Zeng, W. Quality-gated convolutional LSTM for enhancing compressed video. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; IEEE: New York, NY, USA, 2019; pp. 532–537. [Google Scholar]
- Wang, J.; Xu, M.; Deng, X.; Shen, L.; Song, Y. MW-GAN+ for Perceptual Quality Enhancement on Compressed Video. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4224–4237. [Google Scholar] [CrossRef]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Welling, M.; Teh, Y. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In Proceedings of the International Conference on Machine Learning, Honolulu, HA, USA, 18–21 December 2011. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. Neural Inf. Process. Syst. Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution Via Iterative Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Chang, M.; Chen, S.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 2022, 479, 47–59. [Google Scholar] [CrossRef]
- Whang, J.; Delbracio, M.; Talebi, H.; Saharia, C.; Dimakis, A.; Milanfar, P. Deblurring via Stochastic Refinement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Xia, B.; Zhang, Y.; Wang, S.; Wang, Y.; Wu, X.; Tian, Y.; Yang, W.; Van Gool, L. Diffir: Efficient diffusion model for image restoration. arXiv 2023, arXiv:2303.09472. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Romero, A.; Yu, F.; Timofte, R.; Van Gool, L. RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.; Jeong, Y.; Gwon, Y.; Yoon, S. ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021. [Google Scholar] [CrossRef]
- Han, X.; Zheng, H.; Zhou, M. Card: Classification and regression diffusion models. Adv. Neural Inf. Process. Syst. 2022, 35, 18100–18115. [Google Scholar]
- Wolleb, J.; Sandkühler, R.; Bieder, F.; Valmaggia, P.; Cattin, P.C. Diffusion models for implicit image segmentation ensembles. In Proceedings of the International Conference on Medical Imaging with Deep Learning, PMLR, Zurich, Switzerland, 6–8 July 2022; pp. 1336–1348. [Google Scholar]
- Wu, J.; Fu, R.; Fang, H.; Zhang, Y.; Yang, Y.; Xiong, H.; Liu, H.; Xu, Y. Medsegdiff: Medical image segmentation with diffusion probabilistic model. arXiv 2022, arXiv:2211.00611. [Google Scholar]
- Chen, S.; Sun, P.; Song, Y.; Luo, P. Diffusiondet: Diffusion model for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 19830–19843. [Google Scholar]
- Han, L.; Zhao, Y.; Lv, H.; Zhang, Y.; Liu, H.; Bi, G.; Han, Q. Enhancing remote sensing image super-resolution with efficient hybrid conditional diffusion model. Remote. Sens. 2023, 15, 3452. [Google Scholar] [CrossRef]
- Wu, C.; Wang, D.; Bai, Y.; Mao, H.; Li, Y.; Shen, Q. HSR-Diff: Hyperspectral image super-resolution via conditional diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 7083–7093. [Google Scholar]
- Xu, L.; He, G.; Zhou, J.; Lei, J.; Xie, W.; Li, Y.; Tai, Y.W. Transcoded Video Restoration by Temporal Spatial Auxiliary Network. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 2875–2883. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: New York, NY, USA, 1989; pp. 674–693. [Google Scholar] [CrossRef]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–16 July 2017; pp. 624–632. [Google Scholar]
- Snell, J.; Ridgeway, K.; Liao, R.; Roads, B.D.; Mozer, M.C.; Zemel, R.S. Learning to generate images with perceptual similarity metrics. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA, 2017; pp. 4277–4281. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Baranchuk, D.; Rubachev, I.; Voynov, A.; Khrulkov, V.; Babenko, A. Label-Efficient Semantic Segmentation with Diffusion Models. arXiv 2021, arXiv:2112.03126. [Google Scholar]
- Lainema, J.; Bossen, F.; Han, W.J.; Min, J.; Ugur, K. Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1792–1801. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Zhang, J. Zero-shot image restoration using denoising diffusion null-space model. arXiv 2022, arXiv:2212.00490. [Google Scholar]
- Yang, R. NTIRE 2021 challenge on quality enhancement of compressed video: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 647–666. [Google Scholar]
- Xu, Y.; Gao, L.; Tian, K.; Zhou, S.; Sun, H. Non-Local ConvLSTM for Video Compression Artifact Reduction. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar] [CrossRef]
Method | QP27 | QP32 | QP37 |
---|---|---|---|
HEVC | |||
ARCNN | |||
DnCNN | |||
MFQEv2 | |||
RFDA | |||
BasicVSR++ | — | ||
STCF | |||
Ours |
QP | Sequences | ARCNN | DNCNN | MFQEv2.0 | STDF-R3L | RFDA | BasicVSR++ | TVQE | STCF | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|
[23] | [24] | [11] | [5] | [12] | [17] | [16] | [28] | LFDM | |||
37 | A | Traffic | 0.24/0.47 | 0.24/0.57 | 0.59/1.02 | 0.73/1.15 | 0.80/1.28 | 0.94/1.52 | 0.88/1.44 | 0.91/1.44 | 1.04/1.64 |
PeopleonStreet | 0.35/0.75 | 0.41/0.82 | 0.92/1.57 | 1.25/1.96 | 1.44/2.22 | 1.37/2.23 | 1.49/2.33 | 1.62/2.43 | 1.58/2.37 | ||
B | Kimono | 0.22/0.65 | 0.24/0.75 | 0.55/1.18 | 0.85/1.61 | 1.02/1.86 | 1.41/2.18 | 0.99/1.82 | 1.21/1.94 | 1.52/2.26 | |
ParkScene | 0.14/0.38 | 0.14/0.50 | 0.46/1.23 | 0.59/1.47 | 0.64/1.58 | 0.86/2.25 | 0.66/1.76 | 0.74/1.79 | 0.95/2.30 | ||
Cactus | 0.19/0.38 | 0.20/0.48 | 0.50/1.00 | 0.77/1.38 | 0.83/1.49 | 0.62/1.51 | 0.85/1.57 | 0.93/1.61 | 0.82/1.61 | ||
BQTerrace | 0.20/0.28 | 0.20/0.38 | 0.40/0.67 | 0.63/1.06 | 0.65/1.06 | 0.71/1.25 | 0.74/1.34 | 0.75/1.25 | 0.82/1.38 | ||
BasketballDrive | 0.23/0.55 | 0.25/0.58 | 0.47/0.83 | 0.75/1.23 | 0.87/1.40 | 1.02/1.53 | 0.85/1.46 | 1.09/1.59 | 1.06/1.74 | ||
C | RaceHorses | 0.22/0.43 | 0.25/0.65 | 0.39/0.80 | 0.55/1.35 | 0.48/1.23 | 0.76/1.84 | 0.61/1.59 | 0.69/1.59 | 0.86/1.84 | |
BQMall | 0.28/0.68 | 0.28/0.68 | 0.62/1.20 | 0.99/1.80 | 1.09/1.97 | 1.17/2.24 | 1.06/2.02 | 1.25/2.21 | 1.24/2.32 | ||
PartyScene | 0.11/0.38 | 0.13/0.48 | 0.36/1.18 | 0.68/1.94 | 0.66/1.88 | 0.44/1.71 | 0.80/2.27 | 0.73/2.28 | 0.78/2.36 | ||
BasketballDril | 0.25/0.58 | 0.33/0.68 | 0.58/1.20 | 0.79/1.49 | 0.88/1.67 | 0.87/1.67 | 0.98/2.01 | 0.96/1.76 | 0.89/1.88 | ||
D | RaceHorses | 0.27/0.55 | 0.31/0.73 | 0.59/1.43 | 0.83/2.08 | 0.85/2.11 | 1.02/2.74 | 0.86/2.30 | 1.02/2.47 | 1.17/2.90 | |
BQSquare | 0.08/0.08 | 0.13/0.18 | 0.34/0.65 | 0.94/1.25 | 1.05/1.39 | 0.61/0.93 | 1.25/1.74 | 1.06/1.48 | 1.02/1.57 | ||
BlowingBubbles | 0.16/0.35 | 0.18/0.58 | 0.53/1.70 | 0.74/2.26 | 0.78/2.40 | 0.69/2.65 | 0.83/2.60 | 0.80/2.53 | 0.85/2.62 | ||
BasketballRass | 0.26/0.58 | 0.31/0.75 | 0.73/1.55 | 1.08/2.12 | 1.13/2.24 | 1.22/2.66 | 1.12/2.41 | 1.32/2.63 | 1.30/2.73 | ||
E | FourPeople | 0.37/0.50 | 0.39/0.60 | 0.73/0.95 | 0.94/1.17 | 1.13/1.36 | 1.13/1.38 | 1.16/1.42 | 1.11/1.33 | 1.20/1.42 | |
Johnny | 0.25/0.10 | 0.32/0.40 | 0.60/0.68 | 0.81/0.88 | 0.90/0.94 | 0.99/0.97 | 1.12/1.33 | 1.00/1.13 | 1.06/1.25 | ||
KristenAndSara | 0.41/0.50 | 0.42/0.60 | 0.75/0.85 | 0.97/0.96 | 1.19/1.15 | 1.20/1.13 | 1.27/1.23 | 1.12/1.11 | 1.15/1.21 | ||
Average | 0.23/0.45 | 0.26/0.58 | 0.56/1.09 | 0.83/1.51 | 0.91/1.62 | 0.95/1.80 | 0.98/1.82 | 1.02/1.81 | 1.08/1.93 | ||
42 | Average | 0.29/0.96 | 0.22/0.77 | 0.59/1.65 | 0.76/2.04 | 0.82/2.20 | —/— | 0.99/2.64 | 0.88/2.34 | 0.97/2.50 | |
32 | Average | 0.18/0.19 | 0.26/0.35 | 0.52/0.68 | 0.86/1.04 | 0.87/1.07 | 0.89/1.25 | 0.93/1.24 | 1.07/1.32 | 1.09/1.55 | |
27 | Average | 0.18/0.14 | 0.27/0.24 | 0.49/0.42 | 0.72/0.57 | 0.82/0.68 | —/— | 0.87/0.80 | 1.05/0.88 | 1.03/1.17 |
Method | Fusion Scheme | Δ PSNR | Δ SSIM |
---|---|---|---|
Diffusion-only | — | 0.78 | 1.40 |
ELPNet-only | — | 0.51 | 1.32 |
Diffusion and ELPNet | Cross-attention | 0.96 | 1.67 |
Diffusion and ELPNet | Cross-attention and fusion | 1.08 | 1.93 |
Method | Δ PSNR | Δ SSIM | |||
---|---|---|---|---|---|
w/o DWT ELPNet | √ | × | × | 0.40 | 0.97 |
ELPNet | √ | × | × | 0.48 | 1.24 |
ELPNet | √ | √ | × | 0.49 | 1.29 |
ELPNet | √ | √ | √ | 0.51 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jing, M.; Fan, Y.; Weng, W. PixRevive: Latent Feature Diffusion Model for Compressed Video Quality Enhancement. Sensors 2024, 24, 1907. https://doi.org/10.3390/s24061907
Wang W, Jing M, Fan Y, Weng W. PixRevive: Latent Feature Diffusion Model for Compressed Video Quality Enhancement. Sensors. 2024; 24(6):1907. https://doi.org/10.3390/s24061907
Chicago/Turabian StyleWang, Weiran, Minge Jing, Yibo Fan, and Wei Weng. 2024. "PixRevive: Latent Feature Diffusion Model for Compressed Video Quality Enhancement" Sensors 24, no. 6: 1907. https://doi.org/10.3390/s24061907
APA StyleWang, W., Jing, M., Fan, Y., & Weng, W. (2024). PixRevive: Latent Feature Diffusion Model for Compressed Video Quality Enhancement. Sensors, 24(6), 1907. https://doi.org/10.3390/s24061907