A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics
Abstract
:1. Introduction
2. Related Works and Survey Boundaries
3. Taxonomy
4. Traversability Risk Characterization
4.1. Sensor-Based Characterization
4.2. Map-Based Characterization
5. Risk Assessments along a Path in Traversability Grid Maps
6. Quantification Metrics for Stochastic Risk
- A1. Monotonicity;
- A2. Translation invariance;
- A3. Positive homogenity;
- A4. Subadditivity;
- A5. Comonotonic additivity;
- A6. Law invariance.
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UGV | Unmanned Ground Vehicles |
EQN | Ensemble Quantile Networks |
IMU | Inertial Measurement Unit |
GPS | Global Positioning System |
DEM | Digital Elevation Map |
MLS | Multi-Level Surface |
CNN | Convolutional Neural Network |
CVaR | Conditional Value at Risk |
OOD | Out Of Distribution |
MMP | Maximum Margin Planning |
GP | Gaussian Process |
TTC | Time To Collision |
VaR | Value at Risk |
EVaR | Entropic Value at Risk |
RLVaR | Relativistic Value at Risk |
References
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M.; et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 2013, 30, 44–63. [Google Scholar] [CrossRef]
- Husain, A.; Jones, H.; Kannan, B.; Wong, U.; Pimentel, T.; Tang, S.; Daftry, S.; Huber, S.; Whittaker, W.L. Mapping planetary caves with an autonomous, heterogeneous robot team. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–13. [Google Scholar]
- Åstrand, B.; Baerveldt, A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robot. 2002, 13, 21–35. [Google Scholar] [CrossRef]
- Naranjo, J.E.; Clavijo, M.; Jiménez, F.; Gomez, O.; Rivera, J.L.; Anguita, M. Autonomous vehicle for surveillance missions in off-road environment. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 98–103. [Google Scholar]
- Dikmen, M.; Burns, C.M. Autonomous driving in the real world: Experiences with tesla autopilot and summon. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA, 24–26 October 2016; pp. 225–228. [Google Scholar]
- Papadakis, P. Terrain traversability analysis methods for unmanned ground vehicles: A survey. Eng. Appl. Artif. Intell. 2013, 26, 1373–1385. [Google Scholar] [CrossRef]
- Sancho-Pradel, D.L.; Gao, Y. A survey on terrain assessment techniques for autonomous operation of planetary robots. JBIS-J. Br. Interplanet. Soc. 2010, 63, 206–217. [Google Scholar]
- Chhaniyara, S.; Brunskill, C.; Yeomans, B.; Matthews, M.; Saaj, C.; Ransom, S.; Richter, L. Terrain trafficability analysis and soil mechanical property identification for planetary rovers: A survey. J. Terramechanics 2012, 49, 115–128. [Google Scholar] [CrossRef]
- Guastella, D.C.; Muscato, G. Learning-based methods of perception and navigation for ground vehicles in unstructured environments: A review. Sensors 2020, 21, 73. [Google Scholar] [CrossRef]
- Hu, J.w.; Zheng, B.y.; Wang, C.; Zhao, C.h.; Hou, X.l.; Pan, Q.; Xu, Z. A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Front. Inf. Technol. Electron. Eng. 2020, 21, 675–692. [Google Scholar]
- Borges, P.; Peynot, T.; Liang, S.; Arain, B.; Wildie, M.; Minareci, M.; Lichman, S.; Samvedi, G.; Sa, I.; Hudson, N.; et al. A survey on terrain traversability analysis for autonomous ground vehicles: Methods, sensors, and challenges. Field Robot 2022, 2, 1567–1627. [Google Scholar] [CrossRef]
- Berenz, V.; Tanaka, F.; Suzuki, K. Autonomous battery management for mobile robots based on risk and gain assessment. Artif. Intell. Rev. 2012, 37, 217–237. [Google Scholar] [CrossRef]
- Ghabcheloo, R.; Aguiar, A.P.; Pascoal, A.; Silvestre, C.; Kaminer, I.; Hespanha, J. Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 4345–4350. [Google Scholar]
- Neuhaus, F.; Dillenberger, D.; Pellenz, J.; Paulus, D. Terrain drivability analysis in 3D laser range data for autonomous robot navigation in unstructured environments. In Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009; pp. 1–4. [Google Scholar]
- Yun, J.; Miura, J. A quantitative measure for the navigability of a mobile robot using rough maps. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3458–3464. [Google Scholar]
- Ojeda, L.; Borenstein, J.; Witus, G. Terrain trafficability characterization with a mobile robot. In Proceedings of the Unmanned Ground Vehicle Technology VII, Orlando, FL, USA, 28 March–1 April 2005; Volume 5804, pp. 235–243. [Google Scholar]
- Kim, J.; Lee, J. Predicting maximum traction to improve maneuverability for autonomous mobile robots on rough terrain. J. Autom. Control Eng. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Uğur, E.; Şahin, E. Traversability: A case study for learning and perceiving affordances in robots. Adapt. Behav. 2010, 18, 258–284. [Google Scholar] [CrossRef]
- Gibson, J.J. The ecological approach to the visual perception of pictures. Leonardo 1978, 11, 227–235. [Google Scholar] [CrossRef]
- Fan, D.D.; Otsu, K.; Kubo, Y.; Dixit, A.; Burdick, J.; Agha-Mohammadi, A.A. Step: Stochastic traversability evaluation and planning for risk-aware off-road navigation. arXiv 2021, arXiv:2103.02828. [Google Scholar]
- Sevastopoulos, C.; Konstantopoulos, S. A survey of traversability estimation for mobile robots. IEEE Access 2022, 10, 96331–96347. [Google Scholar] [CrossRef]
- Ge, S.S.; Lai, X.; Mamun, A.A. Boundary following and globally convergent path planning using instant goals. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2005, 35, 240–254. [Google Scholar] [CrossRef]
- Mastrogiovanni, F.; Sgorbissa, A.; Zaccaria, R. Robust navigation in an unknown environment with minimal sensing and representation. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2008, 39, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Matveev, A.S.; Hoy, M.C.; Savkin, A.V. The problem of boundary following by a unicycle-like robot with rigidly mounted sensors. Robot. Auton. Syst. 2013, 61, 312–327. [Google Scholar] [CrossRef]
- Wang, A.; Jasour, A.; Williams, B.C. Non-gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty. IEEE Robot. Autom. Lett. 2020, 5, 6041–6048. [Google Scholar] [CrossRef]
- Blackmore, L.; Ono, M.; Williams, B.C. Chance-constrained optimal path planning with obstacles. IEEE Trans. Robot. 2011, 27, 1080–1094. [Google Scholar] [CrossRef]
- Renganathan, V.; Shames, I.; Summers, T.H. Towards integrated perception and motion planning with distributionally robust risk constraints. IFAC-PapersOnLine 2020, 53, 15530–15536. [Google Scholar] [CrossRef]
- Iagnemma, K.; Shibly, H.; Dubowsky, S. On-line terrain parameter estimation for planetary rovers. In Proceedings of the Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 3, pp. 3142–3147. [Google Scholar]
- Ojeda, L.; Borenstein, J.; Witus, G.; Karlsen, R. Terrain characterization and classification with a mobile robot. J. Field Robot. 2006, 23, 103–122. [Google Scholar] [CrossRef]
- Koenig, S.; Simmons, R.G. Risk-sensitive planning with probabilistic decision graphs. In Principles of Knowledge Representation and Reasoning; Elsevier: Amsterdam, The Netherlands, 1994; pp. 363–373. [Google Scholar]
- Howard, A.; Seraji, H.; Tunstel, E. A rule-based fuzzy traversability index for mobile robot navigation. In Proceedings of the Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Republic of Korea, 21–26 May 2001; Volume 3, pp. 3067–3071. [Google Scholar] [CrossRef]
- Yu, M.Y.; Vasudevan, R.; Johnson-Roberson, M. Occlusion-aware risk assessment for autonomous driving in urban environments. IEEE Robot. Autom. Lett. 2019, 4, 2235–2241. [Google Scholar] [CrossRef]
- Dabney, W.; Rowland, M.; Bellemare, M.; Munos, R. Distributional reinforcement learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Hoel, C.J.; Wolff, K.; Laine, L. Ensemble quantile networks: Uncertainty-aware reinforcement learning with applications in autonomous driving. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6030–6041. [Google Scholar] [CrossRef]
- Elfes, A. Using occupancy grids for mobile robot perception and navigation. Computer 1989, 22, 46–57. [Google Scholar] [CrossRef]
- Sock, J.; Kim, J.; Min, J.; Kwak, K. Probabilistic traversability map generation using 3D-LIDAR and camera. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5631–5637. [Google Scholar]
- Li, S.; Song, R.; Zheng, Y.; Zhao, H.; Li, Y. Rugged-terrain traversability analyzing for quadruped robots. In Proceedings of the 2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE), Singapore, 25–28 August 2019; pp. 1–6. [Google Scholar]
- Langer, D.; Rosenblatt, J.K.; Hebert, M. An integrated system for autonomous off-road navigation. In Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon; Springer: Boston, MA, USA, 1997; pp. 259–275. [Google Scholar]
- Ollis, M.; Jochem, T.M. Structural method for obstacle detection and terrain classification. In Proceedings of the Unmanned Ground Vehicle Technology V, Orlando, FL, USA, 21–25 April 2003; Volume 5083, pp. 1–12. [Google Scholar]
- Seraji, H. Traversability index: A new concept for planetary rovers. In Proceedings of the Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 3, pp. 2006–2013. [Google Scholar]
- Seraji, H. New traversability indices and traversability grid for integrated sensor/map-based navigation. J. Robot. Syst. 2003, 20, 121–134. [Google Scholar] [CrossRef]
- Huajun, L.; Jingyu, Y.; Chunxia, Z. A generic approach to rugged terrain analysis based on fuzzy inference. In Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, Kunming, China, 6–9 December 2004; Volume 2, pp. 1108–1113. [Google Scholar]
- Ye, C.; Borenstein, J. A method for mobile robot navigation on rough terrain. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3863–3869. [Google Scholar]
- Daily, M.J.; Harris, J.G.; Keirsey, D.M.; Olin, K.E.; Payton, D.W.; Reiser, K.; Rosenblatt, J.K.; Tseng, D.Y.; Wong, V. Autonomous cross-country navigation with the ALV. In Proceedings of the Proceedings. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; Volume 2, pp. 718–726. [Google Scholar]
- Olin, K.E.; Tseng, D.Y. Autonomous cross-country navigation: An integrated perception and planning system. IEEE Expert 1991, 6, 16–30. [Google Scholar] [CrossRef]
- Xue, H.; Fu, H.; Xiao, L.; Fan, Y.; Zhao, D.; Dai, B. Traversability analysis for autonomous driving in complex environment: A LiDAR-based terrain modeling approach. J. Field Robot. 2023, 40, 1779–1803. [Google Scholar] [CrossRef]
- Triebel, R.; Pfaff, P.; Burgard, W. Multi-level surface maps for outdoor terrain mapping and loop closing. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2276–2282. [Google Scholar]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar]
- Meagher, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 1982, 19, 129–147. [Google Scholar] [CrossRef]
- Laconte, J.; Debain, C.; Chapuis, R.; Pomerleau, F.; Aufrère, R. Lambda-field: A continuous counterpart of the bayesian occupancy grid for risk assessment. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 167–172. [Google Scholar]
- Laconte, J.; Kasmi, A.; Pomerleau, F.; Chapuis, R.; Malaterre, L.; Debain, C.; Aufrère, R. A novel occupancy mapping framework for risk-aware path planning in unstructured environments. Sensors 2021, 21, 7562. [Google Scholar] [CrossRef] [PubMed]
- Randriamiarintsoa, E.; Laconte, J.; Thuilot, B.; Aufrère, R. Risk-Aware Navigation for Mobile Robots in Unknown 3D Environments. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023. [Google Scholar]
- Benrabah, M.; Randriamiarintsoa, E.; Mousse, C.O.; Morceaux, J.; Aufrère, R.; Chapuis, R. Dual occupancy and knowledge maps management for optimal traversability risk analysis. In Proceedings of the 2023 26th International Conference on Information Fusion (FUSION), Charleston, SC, USA, 27–30 June 2023; pp. 1–6. [Google Scholar]
- Fan, D.D.; Agha-Mohammadi, A.A.; Theodorou, E.A. Learning risk-aware costmaps for traversability in challenging environments. IEEE Robot. Autom. Lett. 2021, 7, 279–286. [Google Scholar] [CrossRef]
- Cai, X.; Everett, M.; Sharma, L.; Osteen, P.R.; How, J.P. Probabilistic traversability model for risk-aware motion planning in off-road environments. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 11297–11304. [Google Scholar]
- Yang, Y.; Meng, X.; Yu, W.; Zhang, T.; Tan, J.; Boots, B. Learning semantics-aware locomotion skills from human demonstration. In Proceedings of the Conference on Robot Learning, Atlanta, GA, USA, 6–9 November 2023; pp. 2205–2214. [Google Scholar]
- Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; Malik, J. Cognitive mapping and planning for visual navigation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2616–2625. [Google Scholar]
- Silver, D.; Bagnell, J.A.; Stentz, A. Learning from demonstration for autonomous navigation in complex unstructured terrain. Int. J. Robot. Res. 2010, 29, 1565–1592. [Google Scholar] [CrossRef]
- Ratliff, N.D.; Silver, D.; Bagnell, J.A. Learning to search: Functional gradient techniques for imitation learning. Auton. Robot. 2009, 27, 25–53. [Google Scholar] [CrossRef]
- O’Callaghan, S.; Ramos, F.T.; Durrant-Whyte, H. Contextual occupancy maps using Gaussian processes. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1054–1060. [Google Scholar]
- Ramos, F.; Ott, L. Hilbert maps: Scalable continuous occupancy mapping with stochastic gradient descent. Int. J. Robot. Res. 2016, 35, 1717–1730. [Google Scholar] [CrossRef]
- Senanayake, R.; Ott, L.; O’Callaghan, S.; Ramos, F. Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments. In Proceedings of the 2016 Annual Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016; pp. 3918–3926. [Google Scholar]
- Senanayake, R.; Ramos, F. Bayesian Hilbert Maps for Dynamic Continuous Occupancy Mapping. Conf. Robot Learn. 2017, 78, 458–471. [Google Scholar]
- Guizilini, V.; Senanayake, R.; Ramos, F. Dynamic hilbert maps: Real-time occupancy predictions in changing environments. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4091–4097. [Google Scholar]
- Li, Y.; Ruichek, Y. Occupancy grid mapping in urban environments from a moving on-board stereo-vision system. Sensors 2014, 14, 10454–10478. [Google Scholar] [CrossRef] [PubMed]
- Rohrmüller, F.; Althoff, M.; Wollherr, D.; Buss, M. Probabilistic mapping of dynamic obstacles using Markov Chains for replanning in dynamic environments. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2504–2510. [Google Scholar] [CrossRef]
- Chung, W.; Kim, S.; Choi, M.; Choi, J.; Kim, H.; Moon, C.B.; Song, J.B. Safe navigation of a mobile robot considering visibility of environment. IEEE Trans. Ind. Electron. 2009, 56, 3941–3950. [Google Scholar] [CrossRef]
- Damerow, F.; Eggert, J. Predictive risk maps. In Proceedings of the 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, Qingdao, China, 8–11 October 2014; pp. 703–710. [Google Scholar] [CrossRef]
- Schreiber, M.; Belagiannis, V.; Glaeser, C.; Dietmayer, K. Motion Estimation in Occupancy Grid Maps in Stationary Settings Using Recurrent Neural Networks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2019. [Google Scholar]
- Hoermann, S.; Bach, M.; Dietmayer, K. Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2056–2063. [Google Scholar] [CrossRef]
- Nuss, D.; Reuter, S.; Thom, M.; Yuan, T.; Krehl, G.; Maile, M.; Gern, A.; Dietmayer, K. A random finite set approach for dynamic occupancy grid maps with real-time application. Int. J. Robot. Res. 2016, 37, 841–866. [Google Scholar] [CrossRef]
- Mouhagir, H.; Talj, R.; Cherfaoui, V.; Aioun, F.; Guillemard, F. Evidential-based approach for trajectory planning with tentacles, for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3485–3496. [Google Scholar] [CrossRef]
- Xiao, X.; Dufek, J.; Murphy, R.R. Robot risk-awareness by formal risk reasoning and planning. IEEE Robot. Autom. Lett. 2020, 5, 2856–2863. [Google Scholar] [CrossRef]
- Genevois, T.; Rummelhard, L.; Spalanzani, A.; Laugier, C. From Probabilistic Occupancy Grids to versatile Collision Avoidance using Predictive Collision Detection. In Proceedings of the ITSC 2023-IEEE International Conference on Intelligent Transportation Systems, Bilbao, Spain, 24–28 September 2023. [Google Scholar]
- LaChapelle, D.; Humphreys, T.; Narula, L.; Iannucci, P.; Moradi-Pari, E. Automotive collision risk estimation under cooperative sensing. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 9200–9204. [Google Scholar]
- Heiden, E.; Hausman, K.; Sukhatme, G.S.; Agha-mohammadi, A.A. Planning high-speed safe trajectories in confidence-rich maps. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2880–2886. [Google Scholar]
- Slavík, A. Product Integration, Its History and Applications; Matfyzpress: Prague, Czech Republic, 2007. [Google Scholar]
- Ruszczyński, A. Risk-averse dynamic programming for Markov decision processes. Math. Program. 2010, 125, 235–261. [Google Scholar] [CrossRef]
- Majumdar, A.; Pavone, M. How should a robot assess risk? towards an axiomatic theory of risk in robotics. In Proceedings of the Robotics Research: The 18th International Symposium ISRR, Puerto Varas, Chile, 11–14 December 2017; pp. 75–84. [Google Scholar] [CrossRef]
- Barbosa, F.S.; Lacerda, B.; Duckworth, P.; Tumova, J.; Hawes, N. Risk-aware motion planning in partially known environments. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 14–17 December 2021; pp. 5220–5226. [Google Scholar]
- Kuindersma, S.R.; Grupen, R.A.; Barto, A.G. Variable risk control via stochastic optimization. Int. J. Robot. Res. 2013, 32, 806–825. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [Google Scholar] [CrossRef]
- Yang, X.; Gao, H.; Zhu, P.; Liu, C. Risk-Aware Motion Planning for Very-Large-Scale Robotics Systems Using Conditional Value-at-Risk. In Proceedings of the International Conference on Intelligent Robotics and Applications, Hangzhou, China, 5–7 July 2023; pp. 513–525. [Google Scholar]
- Ahmadi-Javid, A. Entropic value-at-risk: A new coherent risk measure. J. Optim. Theory Appl. 2012, 155, 1105–1123. [Google Scholar] [CrossRef]
- Dixit, A.; Ahmadi, M.; Burdick, J.W. Risk-sensitive motion planning using entropic value-at-risk. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 June–2 July 2021; pp. 1726–1732. [Google Scholar]
- Ahmadi, M.; Rosolia, U.; Ingham, M.D.; Murray, R.M.; Ames, A.D. Risk-Averse Decision Making Under Uncertainty. IEEE Trans. Autom. Control 2023, 69, 55–68. [Google Scholar] [CrossRef]
- Cajas, D. Portfolio Optimization of Relativistic Value at Risk. 2023. Available online: https://www.researchgate.net/publication/369134014_Portfolio_Optimization_of_Relativistic_Value_at_Risk (accessed on 1 February 2024).
Paper | Year | Description | Contribution |
---|---|---|---|
Sancho-Pradel and Gao [7] | 2010 | Planetary exploration | A survey of the field from a planetary exploration perspective, bringing together the underlying techniques, existing approaches, and relevant applications under a common framework |
Chhaniyara et al. [8] | 2012 | Planetary exploration | Brought together vital information pertaining to various terrain characterization techniques into a single article |
Papadakis [6] | 2013 | Universal | Reviewed the field of 3D terrain traversability analysis by aggregating the diverse contributions from individual domains and elaborating on a number of key similarities, as well as differences |
Guastella and Muscato [9] | 2020 | Unstructured Environments | Reviewed the contributions that adopted learning-based methods to solve the problem of environment perception and interpretation with the final aim of the autonomous context-aware navigation of ground vehicles in unstructured environments |
Hu et al. [10] | 2020 | Obstacle detection | Summarized the considerations of the onboard multi-sensor configuration of intelligent ground vehicles in off-road environments |
Borges et al. [11] | 2022 | Universal | Reviewed the literature of terrain traversability analysis and defined unambiguous key terms, as well as discussed the links between the fundamental building blocks that range from terrain classification to traversability regression |
References | Method | Traversability Risk | Application | Criteria |
---|---|---|---|---|
[22] | Instant goal | Minimum distance to obstacle | Obstacle avoidance | Obstacle |
[23] | Nav | Minimum distance to obstacle | Obstacle avoidance | Obstacle |
[24] | Sliding surface | Breach a set distance to obstacle | Obstacle avoidance | Obstacle |
[25,26,27] | Chance constraint | Probability of collision | Obstacle avoidance | Obstacle/Robot |
[28,29] | Proprioceptive sensing | Terrain parameters | Off-road navigation | Terrain/Robot |
[30] | Exponential utility functions | Unspecified cost function | Universal | Unspecified |
[32] | Particle filtering | Particle distribution | Navigation under occlusions | Obstacle |
[31] | Fuzzy rules | Membership to Fuzzy Traversability Index | Off-road navigation | Terrain |
[34] | Quantile regression | Uncertainties | Navigation under occlusions | Obstacle/Robot |
References | Risk Characterization | Map Dimensions | Paper Application |
---|---|---|---|
[35] | Probability of occupancy | 2D | Universal |
[36] | Probability of traversability | 2D | Off-road navigation |
[37] | Slope, curvature, and roughness | 2.5D | Off-road navigation |
[38] | Binary classification | 2D | Off-road navigation |
[39] | Object density | 2D | Off-road navigation |
[41] | Degree of membership to fuzzy sets | 2D | Off-road navigation |
[44,45] | Elevation | 2.5D | Universal |
[47] | Elevation | 2.5D | Environments with vertical structures |
[48,49] | Probability of occupancy | 3D | Universal |
[50,52] | Rate of a harmful event | 2D | Off-road navigation |
[54] | CVaR of unspecified variable | 2D | Off-road navigation |
[55] | Traction distribution | 2D | Off-road navigation |
[56] | Speed | 2D | Off-road navigation |
[58] | Generalizable traversability cost | 2D | Complex unstructured terrain |
[60] | Gaussian distribution | 2D/3D | Urban environment |
[61] | Probability of occupancy | 2D/3D | Urban environment |
Metric | Axioms [79] | Coherence |
---|---|---|
Expected Value | A1–A6 | Coherent |
Worst Case | A1–A6 | Coherent |
Mean Variance | A6 | Non-coherent |
Value at Risk (VaR) | A1–A3, A5, A6 | Non-coherent |
Conditional Value at Risk (CVaR) | A1–A6 | Coherent |
Entropic Value at Risk (EVaR) | A1–A6 | Coherent |
Relativistic Value at Risk (RLVaR) | A1–A6 | Coherent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benrabah, M.; Orou Mousse, C.; Randriamiarintsoa, E.; Chapuis, R.; Aufrère, R. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors 2024, 24, 1909. https://doi.org/10.3390/s24061909
Benrabah M, Orou Mousse C, Randriamiarintsoa E, Chapuis R, Aufrère R. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors. 2024; 24(6):1909. https://doi.org/10.3390/s24061909
Chicago/Turabian StyleBenrabah, Mohamed, Charifou Orou Mousse, Elie Randriamiarintsoa, Roland Chapuis, and Romuald Aufrère. 2024. "A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics" Sensors 24, no. 6: 1909. https://doi.org/10.3390/s24061909
APA StyleBenrabah, M., Orou Mousse, C., Randriamiarintsoa, E., Chapuis, R., & Aufrère, R. (2024). A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors, 24(6), 1909. https://doi.org/10.3390/s24061909