RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia—A Case Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Experiment Conduction
3. Results
3.1. Comparison of RUNX1 and RUNX3 Expression Level between Investigated and Control Group
3.2. RUNX1 Relative Expression Level Statistical Analysis
3.3. RUNX3 Relative Expression Level Statistical Analysis
3.4. Comparison of RUNX1 and RUNX3 Expression Level between ALL and AML Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelzer, D.; Bassan, R.; Dombret, H.; Fielding, A.; Ribera, J.M.; Buske, C.; on behalf of the ESMO Guidelines Committee. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27 (Suppl. 5), v69–v82. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y. Oncogenic potential of the RUNX gene family: ‘Overview’. Oncogene 2004, 23, 4198–4208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Bae, S.C.H.; Chuang, L.S. The RUNX family: Developmental regulators in cancer. Nat. Rev. Cancer. 2015, 15, 81–95. [Google Scholar] [CrossRef]
- Lam, K.; Zhang, D.E. RUNX1 and RUNX1-ETO: Roles in hematopoiesis and leukemogenesis. Front. Biosci. (Landmark Ed). 2012, 17, 1120–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medinger, M.; Lengerke, C.; Passweg, J. Novel Prognostic and Therapeutic Mutations in Acute Myeloid Leukemia. Cancer Genom. Proteom. 2016, 13, 317–329. [Google Scholar]
- Mevel, R.; Draper, J.E.; Lie-A-Ling, M.; Kouskoff, V.; Lacaud, G. RUNX transcription factors: Orchestrators of development. Development 2019, 146, dev148296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniuchi, I.; Osato, M.; Egawa, T.; Sunshine, M.J.; Bae, S.C.; Komori, T.; Ito, Y.; Littman, D.R. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002, 111, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Asou, N. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit. Rev. Oncol. Hematol. 2003, 45, 129–150. [Google Scholar] [CrossRef]
- Haider, A.; Steininger, A.; Ullmann, R.; Hummel, M.; Dimitrova, L.; Beyer, M.; Vandersee, S.; Lenze, D.; Sterry, W.; Assaf, C.; et al. Inactivation of RUNX3/p46 Promotes Cutaneous T-Cell Lymphoma. J. Invest. Dermatol. 2016, 136, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Bangsow, C.; Rubins, N.; Glusman, G.; Bernstein, Y.; Negreanu, V.; Goldenberg, D.; Lotem, J.; Ben-Asher, E.; Lancet, D.; Levanon, D.; et al. The RUNX3 gene-sequence, structure and regulated expression. Gene 2001, 279, 221–232. [Google Scholar] [CrossRef]
- Whittle, M.C.; Hingorani, S.R. Runx3 and cell fate decisions in pancreas cancer. Adv. Exp. Med. Biol. 2017, 962, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Lau, Q.C.; Raja, E.; Salto-Tellez, M.; Liu, Q.; Ito, K.; Inoue, M.; Putti, T.C.; Loh, M.; Ko, T.K.; Huang, C.; et al. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 2006, 66, 6512–6520. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.C.; Choi, J.K. Tumor suppressor activity of RUNX3. Oncogene 2004, 23, 4336–4340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Ding, J.; Yao, L.; Sun, L.; Lin, T.; Song, Y.; Sun, L.; Fan, D. Tumor suppressor gene Runx3 sensitizes gastric cancer cells to chemotherapeutic drugs by downregulating Bcl-2, MDR-1 and MRP-1. Int. J. Cancer 2005, 116, 155–160. [Google Scholar] [CrossRef]
- Kudo, Y.; Tsunematsu, T.; Takata, T. Oncogenic role of RUNX3 in head and neck cancer. J. Cell Biochem. 2011, 112, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Chuang, L.S.; Kimura, S.; Lai, S.K.; Ong, C.W.; Yan, B.; Salto-Tellez, M.; Choolani, M.; Ito, Y. RUNX3 functions as an oncogene in ovarian cancer. Gynecol. Oncol. 2011, 122, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Krygier, A.; Szmajda, D.; Żebrowska, M.; Jeleń, A.; Balcerczak, E. Expression levels of the runt-related transcription factor 1 and 3 genes in the development of acute myeloid leukemia. Oncol. Lett. 2018, 15, 6733–6738. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, T.; Rowe, J.M. Pathogenesis and prognostication in acute lymphoblastic leukemia. F1000Prime Rep. 2014, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, H.; Shimizu, K.; Kozu, T.; Maseki, N.; Kaneko, Y.; Ohki, M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 1991, 88, 10431–10434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osato, M.; Asou, N.; Abdalla, E.; Hoshino, K.; Yamasaki, H.; Okubo, T.; Suzushima, H.; Takatsuki, K.; Kanno, T.; Shigesada, K.; et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999, 93, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, V.; Kern, W.; Harbich, S.; Alpermann, T.; Jeromin, S.; Schnittger, S.; Haferlach, C.; Haferlach, T.; Kohlmann, A. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 2011, 96, 1874–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Gatta, G.; Palomero, T.; Perez-Garcia, A.; Ambesi-Impiombato, A.; Bansal, M.; Carpenter, Z.W.; De Keersmaecker, K.; Sole, X.; Xu, L.; Paietta, E.; et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 2012, 18, 436–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ding, L.; Holmfeldt, L.; Wu, G.; Heatley, S.L.; Payne-Turner, D.; Easton, J.; Chen, X.; Wang, J.; Rusch, M.; et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012, 481, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; Illendula, A.; Pulikkan, J.A.; Roderick, J.E.; Tesell, J.; Yu, J.; Hermance, N.; Zhu, L.J.; Castilla, L.H.; Bushweller, J.H.; et al. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 2017, 130, 1722–1733. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, C.R.; Wang, H.; Shevchuk, O.O.; Lam, S.H.; Giambra, V.; Wang, L.; Gusscott, S.D.; Aster, J.C.; Weng, A.P. Collaboration Between RUNX and NOTCH Pathways in T-Cell Acute Lymphoblastic Leukemia. Blood 2012, 120, 1279. [Google Scholar] [CrossRef]
- Goyama, S.; Schibler, J.; Cunningham, L.; Zhang, Y.; Rao, Y.; Nishimoto, N.; Nakagawa, M.; Olsson, A.; Wunderlich, M.; Link, K.A.; et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 2013, 123, 3876–3888. [Google Scholar] [CrossRef] [Green Version]
- Jakobczyk, H.; Debaize, L.; Soubise, B.; Avner, S.; Rouger-Gaudichon, J.; Commet, A.; Jiang, Y.; Sérandour, A.A.; Rio, A.G.; Carroll, J.S.; et al. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: Application to B cell precursor acute lymphoblastic leukemia. J. Hematol. Oncol. 2021, 14, 47. [Google Scholar] [CrossRef]
- Gandemer, V.; Rio, A.G.; de Tayrac, M.; Sibut, V.; Mottier, S.; Ly Sunnaram, B.; Henry, C.; Monnier, A.; Berthou, C.; Le Gall, E.; et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genom. 2007, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.K.; Wong, T.H.Y.; Wan, T.S.K.; Wang, A.Z.; Chan, N.P.H.; Chan, N.C.N.; Li, C.K.; Ng, M.H.L. RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia. Mol. Cancer 2018, 17, 133. [Google Scholar] [CrossRef]
- Wong, W.F.; Nakazato, M.; Watanabe, T.; Kohu, K.; Ogata, T.; Yoshida, N.; Sotomaru, Y.; Ito, M.; Araki, K.; Telfer, J.; et al. Over-expression of Runx1 transcription factor impairs the development of thymocytes from the double-negative to double-positive stages. Immunology 2010, 130, 243–253. [Google Scholar] [CrossRef]
- Fu, L.; Fu, H.; Tian, L.; Xu, K.; Hu, K.; Wang, J.; Wang, J.; Jing, H.; Shi, J.; Ke, X. High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia. Oncotarget 2016, 7, 15828–15839. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, A.C.; Ballabio, E.; Geng, H.; North, P.; Tapia, M.; Kerry, J.; Biswas, D.; Roeder, R.G.; Allis, C.D.; Melnick, A.; et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep. 2013, 3, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.L.; Marsman, J.; Antony, J.; Schierding, W.; O’Sullivan, J.M.; Horsfield, J.A. Transcriptional Regulation of RUNX1: An Informatics Analysis. Genes 2021, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Harada, Y.; Ogata, Y.; Kagiyama, Y.; Shingai, N.; Doki, N.; Ohashi, K.; Kitamura, T.; Komatsu, N.; Harada, H. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood Adv. 2017, 1, 1382–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korinfskaya, S.; Parameswaran, S.; Weirauch, M.T.; Barski, A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front. Immunol. 2021, 12, 701924. [Google Scholar] [CrossRef]
- Cheng, C.K.; Li, L.; Cheng, S.H.; Lau, K.M.; Chan, N.P.; Wong, R.S.; Shing, M.M.; Li, C.K.; Ng, M.H. Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood 2008, 112, 3391–3402. [Google Scholar] [CrossRef]
- Lacayo, N.J.; Meshinchi, S.; Kinnunen, P.; Yu, R.; Wang, Y.; Stuber, C.M.; Douglas, L.; Wahab, R.; Becton, D.L.; Weinstein, H.; et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004, 104, 2646–2654. [Google Scholar] [CrossRef]
- Yokomizo-Nakano, T.; Sashida, G. Two faces of RUNX3 in myeloid transformation. Exp. Hematol. 2021, 97, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Miething, C.; Grundler, R.; Mugler, C.; Pfeifer, H.; Ottmann, O.; Barwisch, S.; Speicher, M.R.; Peschel, C.; Duyster, J. The Transcription Factors RUNX1/AML1 and RUNX3/AML2 Protect Bcr-Abl-Transformed B-Cells from Imatinib Induced Apoptosis. Blood 2005, 106, 540. [Google Scholar] [CrossRef]
- Miething, C.; Grundler, R.; Mugler, C.; Brero, S.; Hoepfl, J.; Geigl, J.; Speicher, M.R.; Ottmann, O.; Peschel, C.; Duyster, J. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc. Natl. Acad. Sci. USA 2007, 104, 4594–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Number of Patients (n = 60) |
---|---|
Gender | |
Men | 22 |
Women | 38 |
Age of leukemia onset (years) | |
Range (mean) | 35–81 (58) |
Leukemia subtype | |
B-ALL | 47 |
T-ALL | 13 |
Risk stratification group | |
Standard-risk (SR) High-risk (HR) | 36 24 |
Leukocytosis (/μL) | |
Range (mean) | 17,000–31,000 (23,732) |
Blast percentage | |
Range (mean) | 67–99 (83) |
Philadelphia Chromosome | |
Positive | 4 |
Negative | 56 |
CD10 marker (B-ALL) | |
Positive | 41 |
Negative | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmajda-Krygier, D.; Krygier, A.; Jamroziak, K.; Korycka-Wołowiec, A.; Żebrowska-Nawrocka, M.; Balcerczak, E. RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia—A Case Control Study. Curr. Issues Mol. Biol. 2022, 44, 3455-3464. https://doi.org/10.3390/cimb44080238
Szmajda-Krygier D, Krygier A, Jamroziak K, Korycka-Wołowiec A, Żebrowska-Nawrocka M, Balcerczak E. RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia—A Case Control Study. Current Issues in Molecular Biology. 2022; 44(8):3455-3464. https://doi.org/10.3390/cimb44080238
Chicago/Turabian StyleSzmajda-Krygier, Dagmara, Adrian Krygier, Krzysztof Jamroziak, Anna Korycka-Wołowiec, Marta Żebrowska-Nawrocka, and Ewa Balcerczak. 2022. "RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia—A Case Control Study" Current Issues in Molecular Biology 44, no. 8: 3455-3464. https://doi.org/10.3390/cimb44080238
APA StyleSzmajda-Krygier, D., Krygier, A., Jamroziak, K., Korycka-Wołowiec, A., Żebrowska-Nawrocka, M., & Balcerczak, E. (2022). RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia—A Case Control Study. Current Issues in Molecular Biology, 44(8), 3455-3464. https://doi.org/10.3390/cimb44080238