Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Lipids
2.2. FA Profile
3. Materials and Methods
3.1. Halophytophthora Isolates
3.2. Biomass Production
3.3. Total Lipids Quantification
3.4. Fatty Acid (FA) Recovery and Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fell, J.W.; Master, I.M. Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Canad. J. Bot. 1975, 53, 2908–2922. [Google Scholar] [CrossRef]
- Gerrettson-Cornell, L.; Simpson, J. Three new marine Phytophthora species from New South Wales. Mycotaxon 1984, 19, 453–470. [Google Scholar]
- Nakagiri, A.; Ito, T.; Manoch, L.; Tanticharoen, M. A new Halophytophthora species, H. porrigovesica, from subtropical and tropical mangroves. Mycoscience 2001, 42, 33. [Google Scholar] [CrossRef]
- Anastasiou, C.J.; Churchland, L.M. Churchland LM Fungi on decaying leaves in marine habitats. Canad. J. Bot. 1969, 47, 251–257. [Google Scholar] [CrossRef]
- Nigrelli, L.; Thines, M. Tropical oomycetes in the German Bight—Climate warming or overlooked diversity? Fungal Ecol. 2013, 6, 152–160. [Google Scholar] [CrossRef]
- Man in’t Veld, W.A.; Rosendahl, K.C.H.M.; van Rijswick, P.C.J.; Meffert, J.P.; Boer, E.; Westenberg, M.; van der Heide, T.; Govers, L.L. Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere. Eur. J. Plant Pathol. 2018, 153, 341–357. [Google Scholar] [CrossRef]
- Yang, X.; Hong, C. Halophytophthora fluviatilis sp. nov. from freshwater in Virginia. FEMS Microbiol. Lett. 2014, 352, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Caballol, M.; Štraus, D.; Macia, H.; Ramis, X.; Redondo, M.Á.; Oliva, J. Halophytophthora fluviatilis Pathogenicity and Distribution along a Mediterranean-Subalpine Gradient. J. Fungi 2021, 7, 112. [Google Scholar] [CrossRef]
- Nakagiri, A. Ecology and biodiversity of Halophytophthora species. Fungal Divers 2000, 5, 153–164. [Google Scholar]
- Govers, L.L.; van der Zee, E.M.; Meffert, J.P.; van Rijswick, P.C.J.; Man in’t Veld, W.A.; Heusinkveld, J.H.T.; van der Heide, T. Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera marina seeds used for restoration. Sci. Rep. 2017, 7, 43172. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.H.; Jong, S.C. Halophytophthora, gen. nov., a new member of the family Pythiaceae. Mycotaxon 1990, 36, 377–382. [Google Scholar]
- Thines, M. Phylogeny and evolution of plant pathogenic oomycetes—A global overview. Eur. J. Plant Pathol. 2014, 38, 431–447. [Google Scholar] [CrossRef]
- Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
- Bennett, R.M.; Cock, A.W.A.M.; Lévesque, A.; Thines, M. Calycofera gen. nov., an estuarine sister taxon to Phytopythium, Peronosporaceae. Mycol. Prog. 2017, 16, 947–954. [Google Scholar] [CrossRef]
- Bennet, R.M.; Thines, M. Revisiting Salisapiliaceae. Fungal Syst. Evol. 2019, 3, 171–184. [Google Scholar] [CrossRef]
- Jesus, A.L.; Marano, A.V.; Gonçalves, D.R.; Jerônimo, G.H.; Pires-Zotarelli, C.L.A. Two new species of Halophytophthora from Brazil. Mycol. Prog. 2019, 18, 1411–1421. [Google Scholar] [CrossRef]
- Su, C.J.; Hsieh, S.Y.; Chiang, M.W.L.; Pang, K.L. Salinity, pH and temperature growth ranges of Halophytophthora isolates suggest their physiological adaptations to mangrove environments. Mycology 2020, 11, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Maia, C.; Horta Jung, M.; Carella, G.; Milenković, I.; Janoušek, J.; Tomšovský, M.; Mosca, S.; Schena, L.; Cravador, A.; Moricca, S.; et al. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia 2022, 48, 54–90. [Google Scholar] [CrossRef]
- Wang, Q.; Sen, B.; Liu, X.; He, Y.; Xie, Y.; Wang, G. Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Sci. Total Environ. 2018, 631–632, 994–1004. [Google Scholar] [CrossRef]
- Acheampong, M.; Ertemb, F.C.; Kappler, B.; Neubauer, P. In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable? Renew. Sustain. Energ. Rev. 2017, 75, 927–937. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fattu acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef]
- Tallima, H.; Ridi, R.E. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Spencer, L.; Mann, C.; Metcalfe, M.; Webb, M.; Pollard, C.; Spencer, D.; Berry, D.; Steward, W.; Dennison, A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer 2009, 45, 2077–2086. [Google Scholar] [CrossRef]
- Horrocks, L.A.; Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Adarme-Vega, T.C.; Lim, K.Y.D.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Factories 2012, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Sakaguchi, K.; Matsuda, T.; Abe, E.; Hama, Y.; Hayashi, M.; Honda, D.; Okita, Y.; Sugimoto, S.; Okino, N.; et al. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Appl. Environ. Microbiol. 2011, 77, 3870–3876. [Google Scholar] [CrossRef] [Green Version]
- Marchan, L.F.; Chang, K.J.L.; Nichols, P.D.; Mitchell, W.J.; Polglase, J.L.; Gutierrez, T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol. Adv. 2018, 36, 26–46. [Google Scholar] [CrossRef]
- Stredansky, M.; Conti, E.; Salaris, A. Production of polyunsaturated fatty acids by Pythium ultimum in solid-state cultivation. Enzyme Microb. Technol. 2000, 26, 304–307. [Google Scholar] [CrossRef]
- Duan, C.H.; Riley, M.B.; Jeffers, S.N. Effects of growth medium, incubation temperature, and mycelium age on production of five major fatty acids by six species of Phytophthora. Arch. Phytopathol Plant Prot. 2011, 44, 142–157. [Google Scholar] [CrossRef]
- Pang, K.L.; Lin, H.J.; Lin, H.Y.; Huang, Y.F.; Chen, Y.M. Production of arachidonic and eicosapentaenoic acids by the marine oomycete Halophytophthora. Mar. Biotechnol. 2015, 17, 121–129. [Google Scholar] [CrossRef]
- Say, E.K.P.; Yabut, A.T.V.; Cinco, N.E.T.; Caguimbal, N.A.L.E.; Devadanera, M.K.P.; Bennett, R.M.; Arafiles, K.H.V.; Aki, T.; Dedeles, G.R. Growth and fatty acid production of Halophytophthora S13005YL1-1.3 under different salinity and pH levels. Philipp. Agric. Sci. 2017, 100, 6–11. [Google Scholar]
- Caguimbal, N.A.L.E.; Devadanera, M.K.P.; Bennett, R.M.; Arafiles, K.H.V.; Watanabe, K.; Aki, T.; Dedeles, G.R. Growth and fatty acid profiles of Halophytophthora vesicula and Salispina spinosa from Philippine mangrove leaves. Lett. Appl. Microbiol. 2019, 69, 221–228. [Google Scholar] [CrossRef]
- Devanadera, M.K.P.; Bennett, R.M.; Watanabe, K.; Santiago, M.R.; Ramos, M.C.; Aki, T.; Dedeles, G.R. Marine Oomycetes (Halophytophthora and Salispina): A potential source of fatty acids with cytotoxic activity against breast adenocarcinoma cells (MCF7). J. Oleo Sci. 2019, 68, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Su, C.J.; Ju, W.T.; Chen, Y.M.; Chiang, M.W.L.; Hsieh, S.Y.; Lin, H.J.; Gareth Jones, E.; Pang, K.L. Palmitic acid and long-chain polyunsaturated fatty acids dominate in mycelia of mangrove Halophytophthora and Salispina species in Taiwan. Botanica Marina 2021, 64, 503–518. [Google Scholar] [CrossRef]
- Bartnicki-Garcia, S. Chemistry of hyphal walls of Phytophthora. J. Gen. Microbiol. 1966, 42, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Lippman, E.; Erwin, D.C.; Bartnicki-Garcia, S. Isolation and chemical composition of oospore-oogonium walls of Phytophthora megasperma var. sojae. J. Gen. Microbiol. 1974, 80, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Mulgund, A. Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: A review in the energy NEXUS framework. Energy Nexus 2022, 5, 100054. [Google Scholar] [CrossRef]
- Piligaev, A.V.; Sorokina, K.N.; Samoylova, Y.V.; Parmon, V.N. Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: A Review. Catal. Ind. 2019, 11, 349–359. [Google Scholar] [CrossRef]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA)—A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Lee Chang, K.J.; Rye, L.; Dunstan, G.A.; Grant, T.; Koutoulis, A.; Nichols, P.D.; Blackburn, S.I. Life cycle assessment: Heterotrophic cultivation of thraustochytrids for biodiesel production. J. Appl. Phycol. 2015, 27, 639–647. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Pruthi, P.A.; Pruthi, V. Potential of aquatic oomycete as a novel feedstock for microbial oil grown on waste sugarcane bagasse. Environ. Sci. Pollut. Res. 2018, 25, 33443–33454. [Google Scholar] [CrossRef] [Green Version]
- Leaño, E.M.; Gapasin, R.S.J.; Polohan, B.; Vrijmoed, L.L.P. Growth and fatty acid production of thraustochytrids from Panay mangroves, Philippines. Fungal Divers. 2003, 12, 111–122. [Google Scholar]
- Scanu, B.; Hunter, G.C.; Linaldeddu, B.T.; Franceschini, A.; Maddau, L.; Jung, T.; Denman, S. A taxonomic re-evaluation reveals that Phytophthora cinnamomi and P. cinnamomic var parvispora are separate species. For. Pathol. 2014, 44, 1–20. [Google Scholar] [CrossRef]
- Jung, T.; Chang, T.T.; Bakony, J.; Seress, D.; Perez-Sierra, A.; Yang, X.; Hong, C.; Scanu, B.; Fu, C.H.; Hsueh, K.L.; et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017, 66, 194–211. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 1984, 25, 1391–1396. [Google Scholar] [CrossRef]
Fatty Acids 1 | Halophytophthora Species and Isolate Codes | ||||||||
---|---|---|---|---|---|---|---|---|---|
H. thermoam-bigua BD631 | H. lusitanica BD632 | H. lateralis BD680 | H. frigida BD675 | H. sinuata BD656 | H. macrospo-rangia BD645 | H. brevispo-rangia BD658 | H. celeris BD646 | H. avicennae BD697 | |
C12:0 Lauric acid | nd | nd | nd | nd | 0.34 ± 0.59 | 0.89 ± 0.78 | nd | nd | 3.95 ± 0.23 |
C14:0 Myristic acid | 15.56 ± 0.42 | 11.76 ± 0.64 | 14.09 ± 0.30 | 12.55 ± 017 | 14.18 ± 0.52 | 12.93 ± 0.44 | 20.61 ± 0.15 | 16.17 ± 0.33 | 11.93 ± 1.04 |
C16:0 Palmitic acid | 34.50 ± 0.95 | 31.66 ± 0.16 | 33.01 ± 0.40 | 31.86 ± 0.45 | 28.32 ± 1.40 | 26.56 ± 1.35 | 38.63 ± 0.22 | 30.23 ± 0.55 | 32.82 ± 0.99 |
C18:0 Stearic acid | 2.52 ± 0.15 | 4.07 ± 0.04 | 3.11 ± 0.02 | 4.28 ± 0.10 | 3.34 ± 0.29 | 4.11 ± 0.03 | 2.52 ± 0.09 | 2.40 ± 0.19 | 5.37 ± 0.15 |
∑ SFA | 52.58 | 47.50 | 50.21 | 48.70 | 43.68 | 44.99 | 61.76 | 48.80 | 54.06 |
C16:1 Palmitoleic acid | 2.39 ± 0.01 | 1.24 ± 0.08 | 1.39 ± 0.02 | 0.61 ± 0.04 | 0.66 ± 0.08 | 0.86 ± 0.06 | nd | 0.98 ± 0.07 | 1.14 ± 0.04 |
C18:1n9c Oleic acid | 10.86 ± 0.11 | 18.45 ± 0.09 | 18.66 ± 0.10 | 24.69 ± 0.42 | 23.76 ± 1.42 | 18.03 ± 0.48 | 13.79 ± 0.49 | 19.53 ± 0.14 | 19.42 ± 0.38 |
C22:1n9 Erucic acid | 1.72 ± 0.03 | 1.61 ± 0.18 | 1.32 ± 0.10 | 0.22 ± 0.13 | 0.83 ± 0.03 | 1.19 ± 0.05 | nd | 0.40 ± 0.70 | 0.87 ± 0.11 |
∑ MUFA | 14.97 | 21.31 | 21.37 | 25.52 | 25.25 | 20.07 | 13.79 | 20.92 | 21.42 |
C18:2n6 9,12-octadecadienoic acid | 17.89 ± 0.25 | 17.85 ± 0.29 | 16.71 ± 0.20 | 21.05 ± 0.43 | 22.11 ± 1.25 | 25.80 ± 0.64 | 18.92 ± 0.07 | 21.83 ± 0.48 | 11.11 ± 0.35 |
C18:3n6 γ-linolenic acid | nd | nd | nd | nd | nd | nd | nd | nd | 2.12 ± 0.11 |
C20:3n6 Eicosatrienoic acid | 1.58 ± 0.05 | 2.36 ± 0.20 | 1.82 ± 0.17 | nd | 0.52 ± 0.45 | 0.98 ± 0.05 | nd | nd | 1.65 ± 0.29 |
C20:4n6 Arachidonic acid (ARA) | 3.89 ± 0.12 | 3.48 ± 0.29 | 2.57 ± 0.09 | 1.80 ± 0.07 | 2.58 ± 0.22 | 3.00 ± 0.15 | 1.93 ± 0.06 | 3.00 ± 0.19 | 3.05 ± 0.24 |
C20:5n3 Eicosapentaenoic acid (EPA) | 9.09 ± 0.31 | 7.50 ± 0.06 | 7.33 ± 0.17 | 2.93 ± 0.03 | 3.35 ± 0.52 | 5.64 ± 0.52 | 3.60 ± 0.13 | 5.44 ± 0.15 | 6.59 ± 0.31 |
∑ PUFA | 32.45 | 31.20 | 28.42 | 25.78 | 28.56 | 35.43 | 24.45 | 30.28 | 24.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, C.; Jung, T.; Engelen, A.; Jung, M.H.; Custódio, L. Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal. Mar. Drugs 2023, 21, 227. https://doi.org/10.3390/md21040227
Maia C, Jung T, Engelen A, Jung MH, Custódio L. Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal. Marine Drugs. 2023; 21(4):227. https://doi.org/10.3390/md21040227
Chicago/Turabian StyleMaia, Cristiana, Thomas Jung, Aschwin Engelen, Marília Horta Jung, and Luísa Custódio. 2023. "Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal" Marine Drugs 21, no. 4: 227. https://doi.org/10.3390/md21040227
APA StyleMaia, C., Jung, T., Engelen, A., Jung, M. H., & Custódio, L. (2023). Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal. Marine Drugs, 21(4), 227. https://doi.org/10.3390/md21040227