The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis Proposal
2.1. Risk Characteristics of Fertilizer
2.2. Heavy Rainfall Variability and Risk-Averse Farmers’ Fertilizer Use
- (1)
- There is a positive relationship between heavy rainfall variability and farmers’ fertilizer application rates on maize.
- (2)
- Yield fluctuations are a channel through which heavy rainfall variability affects farmers’ fertilizer application rates on maize.
3. Data and Methodology
3.1. Data Source
3.2. Research Design
3.3. Variable Construction
4. Empirical Results
4.1. Effect of Heavy Rainfall Variability on Fertilizer Application Rates
4.2. Robustness Checks
4.3. Heterogeneous Effects
4.4. Potential Mechanisms
5. Further Discussion
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Total Fertilizer Application Rates (10,000 Tons) | Maize (kg/mu) | Wheat (kg/mu) | Japonica Rice (kg/mu) | Middle Indica Rice (kg/mu) | Late Indica Rice (kg/mu) |
---|---|---|---|---|---|---|
2000 | 4146.41 | 22.50 | 22.00 | 23.10 | 19.40 | 19.80 |
2005 | 4766.22 | 18.39 | 21.59 | 22.58 | 19.74 | 20.38 |
2010 | 5561.68 | 22.51 | 25.15 | 24.39 | 18.93 | 21.09 |
2015 | 6022.60 | 24.30 | 27.05 | 24.06 | 20.06 | 22.39 |
2016 | 5984.41 | 24.82 | 27.35 | 23.87 | 20.50 | 23.14 |
2017 | 5859.41 | 24.88 | 27.67 | 24.61 | 20.30 | 22.76 |
2018 | 5653.42 | 24.78 | 27.41 | 24.30 | 20.53 | 22.70 |
2019 | 5403.59 | 24.36 | 28.13 | 24.96 | 21.37 | 23.12 |
2020 | 5250.65 | 24.97 | 28.33 | 26.02 | 21.08 | 22.92 |
References
- Kahrl, F.; Li, Y.; Su, Y.; Tennigkeit, T.; Wilkes, A.; Xu, J. Greenhouse gas emissions from nitrogen fertilizer use in China. Environ. Sci. Policy 2010, 13, 688–694. [Google Scholar] [CrossRef]
- Ma, Q.; Zheng, S.; Deng, P. Impact of internet use on farmers’ organic fertilizer application behavior under the climate change context: The role of social network. Land 2022, 11, 1601. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pu, M.; Zhong, Y. Evaluating China food’s fertilizer reduction and efficiency initiative using a double stochastic meta-frontier method. Int. J. Environ. Res. Public Health 2022, 19, 7342. [Google Scholar] [CrossRef]
- Fang, P.; Abler, D.; Lin, G.; Sher, A.; Quan, Q. Substituting organic fertilizer for chemical fertilizer: Evidence from apple growers in China. Land 2021, 10, 858. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J. Spatiotemporal changes of chemical fertilizer application and its environmental risks in China from 2000 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 11911. [Google Scholar] [CrossRef]
- Ge, J.; Zhou, S. Does factor market distortions stimulate the agricultural non-point source pollution? A case study of fertilizer. Issues Agric. Econ. 2012, 33, 92–98. (In Chinese) [Google Scholar]
- Li, Y.; Zhang, W.; Ma, L.; Huang, G.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s fertilizer policies: Impacts on the industry, food security, and the environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Nat. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liu, P.; Li, Y.; Ma, L.; Alva, A.; Dou, Z.; Chen, Q.; Zhang, F. Phosphorus in China’s intensive vegetable production systems: Overfertilization, soil enrichment, and environmental implications. J. Environ. Qual. 2013, 42, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, Y. The impact of non-agricultural income on input structure of agricultural factors under the background of rural labour migration. Chin. J. Popul. Sci. 2017, 2, 70–79. (In Chinese) [Google Scholar]
- Huan, M.; Zhan, S. Agricultural production services, farm size and chemical fertilizer use in China’s maize production. Land 2022, 11, 1931. [Google Scholar] [CrossRef]
- Gao, J.; Peng, C.; Shi, Q. Study on the high chemical fertilizer consumption and fertilization behavior of small rural household in China: Discovery from 1995-2016 National Fixed Point Survey Data. J. Manag. World 2019, 35, 120–132. (In Chinese) [Google Scholar]
- Qiu, H.; Luan, H.; Li, J.; Wang, Y. The impact of risk aversion on farmers’ behavior of excessive fertilizer application. Chin. Rural. Econ. 2014, 3, 85–96. (In Chinese) [Google Scholar]
- Ji, Y.; Zhang, H.; Lu, W.; Liu, H. Differentiation, incomplete information, and farmers’ excessive fertilizer application. J. Agrotech. Econ. 2016, 2, 14–22. (In Chinese) [Google Scholar]
- Khor, L.Y.; Zeller, M. Inaccurate fertilizer content and its effect on the estimation of production functions. China Econ. Rev. 2014, 30, 123–132. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Zhang, J.; Pampolino, M.F.; Johnston, A.M.; Zhou, W. Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Field Crops Res. 2017, 203, 8–15. [Google Scholar] [CrossRef]
- Liu, J.; Zuo, Q.; Zhai, L.; Luo, C.; Liu, H.; Wang, H.; Liu, S.; Zou, G.; Ren, T. Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications. J. Integr. Agric. 2016, 15, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, S. Post-disaster adaptability to extreme weather events. China Popul. Resour. Environ. 2012, 22, 167–174. (In Chinese) [Google Scholar]
- Kaliba, A.R.; Verkuijl, H.; Mwangi, W. Factors affecting adoption of improved maize seeds and use of inorganic fertilizer for maize production in the intermediate and lowland zones of Tanzania. J. Agric. Appl. Econ. 2000, 32, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Mohanam, T.C. The Determinants of Fertilizer Consumption & Its Growth; Northern Book Centre: New Delhi, India, 2002; ISBN 81-7211-126-6. [Google Scholar]
- Nyssen, J.; Biruk, B.; Tesfamariam, Z.; Frankl, A.; Demissie, B.; Ghebreyohannes, T.; Meaza, H.; Poesen, J.; Van Eetvelde, V.; Zenebe, A.; et al. Geographical determinants of inorganic fertiliser sales and of resale prices in north Ethiopia. Agric. Ecosyst. Environ. 2017, 249, 256–268. [Google Scholar] [CrossRef]
- Haider, H.; Smale, M.; Theriault, V. Intensification and intrahousehold decisions: Fertilizer adoption in Burkina Faso. World Dev. 2018, 105, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Heisse, C.; Morimoto, R. Climate Change, Chemical Fertilisers, and Sustainable Development: Panel Evidence from Tanzanian Maize Farmers; Working Papers 217; Department of Economics, SOAS, University of London: London, UK, 2019. [Google Scholar]
- Bora, K. Rainfall shocks and fertilizer use: A district level study of India. Environ. Dev. Sustain. 2022, 27, 556–577. [Google Scholar] [CrossRef]
- Alem, Y.; Bezabih, M.; Kassie, M.; Zikhali, P. Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia. Agric. Econ. 2010, 41, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Gebrehaweria, G.; Stein, H. Does irrigation enhance and food deficits discourage fertilizer adoption in a risky environment? Evidence from Tigray, Ethiopia. J. Dev. Agric. Econ. 2011, 3, 514–528. [Google Scholar] [CrossRef]
- Dercon, S.; Christiaensen, L. Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia. J. Dev. Econ. 2011, 96, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Roosen, J.; Hennessy, D.A. Tests for the role of risk aversion on input use. Am. J. Agric. Econ. 2003, 85, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.M. Asymmetry, partial moments, and production risk. Am. J. Agric. Econ. 2010, 92, 1294–1309. [Google Scholar] [CrossRef] [Green Version]
- Rajsic, P.; Weersink, A.; Gandorfer, M. Risk and nitrogen application levels. Can. J. Agric. Econ. 2009, 57, 223–239. [Google Scholar] [CrossRef]
- Monjardino, M.; McBeath, T.M.; Brennan, L.; Llewellyn, R.S. Are farmers in low-rainfall cropping regions under-fertilising with nitrogen? A risk analysis. Agric. Syst. 2013, 116, 37–51. [Google Scholar] [CrossRef]
- Paulson, N.D.; Babcock, B.A. Readdressing the fertilizer problem. J. Agric. Resour. Econ. 2010, 35, 368–384. [Google Scholar] [CrossRef]
- SriRamaratnam, S.; Bessler, D.A.; Rister, M.E.; Matocha, J.E.; Novak, J. Fertilization under uncertainty: An analysis based on producer yield expectations. Am. J. Agric. Econ. 1987, 69, 349–357. [Google Scholar] [CrossRef]
- Babcock, B.A. The effects of uncertainty on optimal nitrogen applications. Appl. Econ. Perspect. P 1992, 14, 271–280. [Google Scholar] [CrossRef]
- Yang, X.; Fang, S.; Lant, C.L.; Luo, X.; Zheng, Z. Overfertilization in the economically developed and ecologically critical Lake Tai region, China. Hum. Ecol. 2012, 40, 957–964. [Google Scholar] [CrossRef]
- Stuart, D.; Schewe, R.L.; McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 2014, 36, 210–218. [Google Scholar] [CrossRef]
- Sheriff, G. Efficient waste? Why farmers over-apply nutrients and the implications for policy design. Appl. Econ. Perspect. P 2005, 27, 542–557. [Google Scholar] [CrossRef]
- Liu, X.; Lu, K.; Li, P.; Xu, G.; Cheng, S.; Bai, L.; Wei, F. Research and simulation of soil water infiltration on slope under different rainfall conditions. J. Arid. Land Resour. Environ. 2018, 32, 114–118. (In Chinese) [Google Scholar]
- Hodrick, R.J.; Prescott, E.C. Postwar US business cycles: An empirical investigation. J. Money Credit. Bank. 1997, 29, 1–16. Available online: http://www.jstor.org/stable/2953682 (accessed on 10 August 2022). [CrossRef]
- Arslan, A.; Belotti, F.; Lipper, L. Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania. Food Policy 2017, 69, 68–81. [Google Scholar] [CrossRef]
- Urban, D.; Roberts, M.J.; Schlenker, W.; Lobell, D.B. Projected temperature changes indicate significant increase in interannual variability of US maize yields. Clim. Chang. 2012, 112, 525–533. [Google Scholar] [CrossRef]
- Pattanayak, A.; Kumar, K.K. Weather sensitivity of rice yield: Evidence from India. Clim. Chang. Econ. 2014, 5, 1450011. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.P.; Reinhard, S. Measuring the effects of extreme weather events on yields. Weather. Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Murari, K.K.; Sandeep, M.; Jayaraman, T.; Madhura, S. Extreme temperatures and crop yields in Karnataka, India. Rev. Agrar. Stud. 2018, 8, 92–114. [Google Scholar] [CrossRef]
Variables | Definition | Mean | Standard Deviation | ||
---|---|---|---|---|---|
Over-All | Between-Group | Within-Group | |||
Fertilizer application rates | Fertilizer application rates per unit area at village-level (kg/mu) | 60.84 | 25.22 | 22.15 | 12.94 |
Heavy rainfall variability | Interannual fluctuation of heavy rainfall during the fertilization concentration period in the previous 8 years | 0.78 | 0.48 | 0.49 | 0.20 |
Heavy rainfall | Annual average heavy rainfall during the fertilization concentration period in the previous 8 years (cm) | 12.24 | 7.51 | 7.29 | 2.42 |
Fertilizer/grain price ratio | Ratio of grain price in the previous year and fertilizer price in the current year | 0.84 | 0.34 | 0.29 | 0.18 |
Irrigation conditions | Average proportion of irrigated land in farmland operated by farmers | 0.70 | 0.33 | 0.31 | 0.09 |
Terrain | Plain | 0.46 | 0.50 | 0.49 | 0.11 |
Hills or mountainous areas | 0.54 | 0.50 | 0.49 | 0.11 | |
Village economic level in its county | Below medium | 0.18 | 0.38 | 0.32 | 0.21 |
Medium | 0.45 | 0.50 | 0.40 | 0.30 | |
Above medium | 0.37 | 0.48 | 0.40 | 0.27 | |
Average cultivated land area | Average cultivated land per household at village-level (mu/household) | 10.74 | 9.71 | 9.14 | 2.94 |
Yield fluctuations | Interannual fluctuation of maize yield in the previous 8 years (kg/mu) | 60.30 | 33.52 | 29.86 | 17.43 |
Lagged grain price fluctuations | Lagged interannual fluctuation of grain price in the previous 8 years (yuan) | 0.22 | 0.09 | 0.08 | 0.05 |
Fertilizer price fluctuations | Interannual fluctuation of fertilizer price in the previous 8 years (yuan) | 0.30 | 0.15 | 0.13 | 0.09 |
Year | Nationwide | North China | Northeast China | East China | Central China | South China | Southwest China | Northwest China |
---|---|---|---|---|---|---|---|---|
2003 | 21.17 | 16.70 | 18.37 | 20.13 | 21.60 | 20.70 | 23.20 | 25.28 |
2004 | 20.67 | 18.43 | 15.56 | 19.63 | 18.96 | 16.79 | 24.33 | 25.15 |
2005 | 20.02 | 18.36 | 16.17 | 20.30 | 19.16 | 21.27 | 20.24 | 23.87 |
2006 | 20.93 | 19.66 | 19.18 | 21.11 | 19.59 | 23.02 | 20.33 | 23.79 |
2007 | 21.93 | 20.39 | 20.18 | 22.64 | 20.53 | 23.36 | 20.39 | 25.73 |
2008 | 21.01 | 19.55 | 19.85 | 21.11 | 20.66 | 23.69 | 20.62 | 22.82 |
2009 | 22.32 | 19.16 | 21.51 | 22.60 | 21.02 | 21.88 | 22.58 | 25.58 |
2010 | 23.75 | 20.74 | 22.57 | 22.90 | 23.08 | 25.32 | 22.77 | 28.44 |
2011 | 23.50 | 21.03 | 23.06 | 23.21 | 22.49 | 23.56 | 21.06 | 28.85 |
2012 | 23.80 | 20.64 | 24.09 | 24.78 | 23.03 | 22.65 | 21.37 | 28.34 |
2013 | 24.06 | 21.71 | 24.49 | 25.74 | 22.53 | 24.18 | 21.62 | 27.42 |
2014 | 25.20 | 23.21 | 25.44 | 27.27 | 24.08 | 25.16 | 21.54 | 29.20 |
2015 | 25.10 | 23.38 | 25.32 | 26.52 | 23.06 | 20.78 | 22.21 | 30.17 |
2016 | 25.47 | 24.28 | 25.45 | 26.73 | 22.62 | 22.76 | 22.35 | 30.68 |
2017 | 25.59 | 24.38 | 25.64 | 26.24 | 22.24 | 23.84 | 22.61 | 31.04 |
2018 | 25.23 | 24.83 | 25.73 | 25.53 | 22.41 | 22.46 | 21.82 | 30.44 |
2019 | 25.07 | 24.43 | 24.95 | 24.46 | 22.05 | 19.69 | 22.42 | 31.60 |
2020 | 26.10 | 24.52 | 25.57 | 26.37 | 22.84 | 22.85 | 23.12 | 32.92 |
(1) | (2) | (3) | |
---|---|---|---|
Heavy rainfall variability | 11.533 *** | 12.430 *** | 17.296 *** |
(2.082) | (1.861) | (2.237) | |
Heavy rainfall | 0.298 *** | 0.373 *** | 0.498 *** |
(0.096) | (0.085) | (0.095) | |
Fertilizer/grain price ratio | 42.209 *** | 41.152 *** | |
(1.779) | (1.905) | ||
Irrigation conditions | 1.695 | 1.568 | |
(1.490) | (1.583) | ||
Average cultivated land area | 0.143 | −0.090 | |
(0.119) | (0.192) | ||
Terrain (Plain = 1) | |||
Hills or mountainous areas | −1.044 | −1.132 | |
(1.035) | (1.067) | ||
Village economic level (Below medium = 1) | |||
Medium | −0.578 | −0.783 | |
(1.192) | (1.252) | ||
Above medium | 4.191 *** | 4.276 *** | |
(1.228) | (1.270) | ||
Year fixed effects | YES | YES | YES |
Province fixed effects | YES | YES | YES |
Province * year fixed effects | NO | NO | YES |
R2 | 0.261 | 0.442 | 0.488 |
RMSE | 22 | 19 | 18 |
Observations | 2482 | 2482 | 2482 |
(1) | (2) | (3) | |
---|---|---|---|
Heavy rainfall variability | 9.145 *** | 12.050 *** | 16.325 *** |
(1.097) | (2.038) | (2.095) | |
Heavy rainfall | 0.348 *** | 0.329 *** | 0.516 *** |
(0.050) | (0.087) | (0.096) | |
Control variables | YES | YES | YES |
Year fixed effects | YES | YES | YES |
Province fixed effects | YES | YES | YES |
Province * year fixed effects | YES | YES | YES |
R2 | 0.663 | 0.477 | 0.490 |
RMSE | 15 | 18 | 18 |
Observations | 2473 | 2456 | 2494 |
Terrain | Irrigation Conditions | Village Economic Level | ||||
---|---|---|---|---|---|---|
Plain | Hills and Mountainous | Poor | Good | Poor | Good | |
Heavy rainfall variability | 7.554 ** | 8.341 *** | 10.711 *** | 19.800 *** | 15.742 *** | 22.550 *** |
(3.828) | (2.719) | (3.100) | (3.155) | (2.992) | (3.704) | |
Heavy rainfall | 0.096 | 0.244 * | 0.655 *** | 0.491 *** | 0.488 *** | 0.725 *** |
(0.165) | (0.145) | (0.161) | (0.146) | (0.120) | (0.198) | |
Control variables | YES | YES | YES | YES | YES | YES |
Year fixed effects | YES | YES | YES | YES | YES | YES |
Province fixed effects | YES | YES | YES | YES | YES | YES |
Province * year fixed effects | YES | YES | YES | YES | YES | YES |
R2 | 0.648 | 0.562 | 0.606 | 0.548 | 0.502 | 0.640 |
Observations | 1153 | 1329 | 991 | 1491 | 1558 | 924 |
(1) | (2) | (3) | |
---|---|---|---|
Heavy rainfall variability | 9.715 *** | 9.445 *** | 12.901 *** |
(2.575) | (2.550) | (3.012) | |
Heavy rainfall | −0.163 | −0.212 | −0.098 |
(0.165) | (0.165) | (0.184) | |
Lagged grain price fluctuations | 24.908 ** | 15.711 | |
(9.773) | (9.993) | ||
Fertilizer price fluctuations | 5.577 * | 9.950 *** | |
(3.021) | (3.535) | ||
Irrigation conditions | −3.206 | −2.689 | |
(2.814) | (2.958) | ||
Average cultivated land area | −0.307 | 1.749 *** | |
(0.247) | (0.275) | ||
Terrain (Plain = 1) | |||
Hills or mountainous areas | −5.334 *** | −5.034 *** | |
(1.649) | (1.721) | ||
Village economic level (Below medium = 1) | |||
Medium | −8.226 *** | −8.602 *** | |
(1.956) | (2.065) | ||
Above medium | −10.642 *** | −10.424 *** | |
(2.105) | (2.211) | ||
Year fixed effects | YES | YES | YES |
Province fixed effects | YES | YES | YES |
Province * year fixed effects | NO | NO | YES |
R2 | 0.225 | 0.241 | 0.294 |
RMSE | 30 | 29 | 28 |
Observations | 2482 | 2482 | 2482 |
City | County | Maize Farmers | Rice Farmers |
---|---|---|---|
Lianyungang | Donghai | 19 | 0 |
Suqian | Sihong | 20 | 4 |
Yancheng | Dafeng | 18 | 3 |
Yangzhou | Baoying | 0 | 13 |
Zhenjiang | Danyang | 2 | 0 |
Nanjing | Lishui | 4 | 5 |
Nantong | Haimen | 25 | 0 |
Question | Crop Type | Yes (%) | How Much Will Yield Decrease? (%) | ||||
---|---|---|---|---|---|---|---|
Below 10 | 10–20 | 20–35 | 35–50 | Above 50 | |||
Would a 10% reduction in current fertilizer use have an impact on yield? | Maize | 72 | 46 | 33 | 11 | 3 | 7 |
Rice | 84 | 67 | 24 | 0 | 0 | 9 | |
Would a 20% reduction in current fertilizer use have an impact on yield? | Maize | 92 | 25 | 29 | 19 | 17 | 10 |
Rice | 100 | 20 | 44 | 20 | 12 | 4 |
Question | Crop Type | Yes (%) | How Much More Fertilizer Should Be Applied? (%) | ||||
---|---|---|---|---|---|---|---|
Below 10 | 10–20 | 20–35 | 35–50 | Above 50 | |||
When applying base fertilizer, if 30% of the fertilizer is estimated to be lost due to waterlogging within half a month, will you apply more fertilizer? | Maize | 56 | 31 | 26 | 25 | 12 | 6 |
Rice | 44 | 33 | 34 | 11 | 16 | 6 | |
If waterlogging occurs and may reduce the yield by 30%, will you apply topdressing? | Maize | 70 | 21 | 19 | 28 | 19 | 13 |
Rice | 76 | 37 | 31 | 11 | 5 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Chen, J. The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China. Int. J. Environ. Res. Public Health 2022, 19, 15906. https://doi.org/10.3390/ijerph192315906
Guo J, Chen J. The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China. International Journal of Environmental Research and Public Health. 2022; 19(23):15906. https://doi.org/10.3390/ijerph192315906
Chicago/Turabian StyleGuo, Jiangying, and Jiwei Chen. 2022. "The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China" International Journal of Environmental Research and Public Health 19, no. 23: 15906. https://doi.org/10.3390/ijerph192315906
APA StyleGuo, J., & Chen, J. (2022). The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China. International Journal of Environmental Research and Public Health, 19(23), 15906. https://doi.org/10.3390/ijerph192315906