Identification of a Two-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival in Diffuse-Type Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Validation of Expression Level of DEGs
2.3. Kaplan–Meier Plotter Analysis
2.4. Clinical Correlation Analysis and Biological Process Prediction
2.5. The Establishment of the Predictive Nomogram
2.6. External Validation of Two-Gene Signature-Based Nomogram by TCGA Dataset
3. Results
3.1. Identification of Diffuse-Type Gastric Cancer-Specific Gene Signatures
3.2. Validation of the Expression Level of Four Differentiated Expressed Genes
3.3. Clinical Correlation Analysis of Three DEGs
3.4. Kaplan–Meier Analysis and Evaluation of Prognostic Factors in Diffuse-Type Gastric Cancer
3.5. Establishment of the Prognostic Nomogram of Diffuse-Type Gastric Cancer
3.6. Evaluation the Predictive Performance of Nomogram and External Validation of Nomogram
3.7. Scatter Point
3.8. Gene Set Enrichment Analysis (GSEA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Hutchins, G.; Arai, T.; Sakamaki, K.; Miyagi, Y.; Tsuburaya, A.; Ogata, T.; Oshima, T.; Earle, S.; Yoshikawa, T.; et al. Identification of a high-risk subtype of intestinal-type Japanese gastric cancer by quantitative measurement of the luminal tumor proportion. Cancer Med. 2018, 7, 4914–4923. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Fang, W.L.; Wang, R.F.; Liu, C.A.; Yang, M.H.; Lo, S.S.; Wu, C.W.; Li, A.F.; Shyr, Y.M.; Huang, K.H. Clinicopathological Variation of Lauren Classification in Gastric Cancer. Pathol. Oncol. Res. 2016, 22, 197–202. [Google Scholar] [CrossRef]
- Lauren, P. Histogenesis of intestinal and diffuse types of gastric carcinoma. Scand. J. Gastroenterol. Suppl. 1991, 180, 160–164. [Google Scholar]
- Qiu, M.Z.; Cai, M.Y.; Zhang, D.S.; Wang, Z.Q.; Wang, D.S.; Li, Y.H.; Xu, R.H. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China. J. Transl. Med. 2013, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Gong, E.J.; Chung, E.J.; Park, H.W.; Bae, S.E.; Kim, E.H.; Kim, J.; Do, Y.S.; Kim, T.H.; Chang, H.S.; et al. The Characteristics and Prognosis of Diffuse-Type Early Gastric Cancer Diagnosed during Health Check-Ups. Gut Liver 2017, 11, 807–812. [Google Scholar] [CrossRef]
- Fang, C.; Wang, W.; Deng, J.Y.; Sun, Z.; Seeruttun, S.R.; Wang, Z.N.; Xu, H.M.; Liang, H.; Zhou, Z.W. Proposal and validation of a modified staging system to improve the prognosis predictive performance of the 8th AJCC/UICC pTNM staging system for gastric adenocarcinoma: A multicenter study with external validation. Cancer Commun. (Lond) 2018, 38, 67. [Google Scholar] [CrossRef] [Green Version]
- Son, T.; Sun, J.; Choi, S.; Cho, M.; Kwon, I.G.; Kim, H.I.; Cheong, J.H.; Choi, S.H.; Noh, S.H.; Woo, Y.; et al. Multi-institutional validation of the 8th AJCC TNM staging system for gastric cancer: Analysis of survival data from high-volume Eastern centers and the SEER database. J. Surg. Oncol. 2019, 120, 676–684. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Guo, S.; Dong, Z.; Meng, X.; Zheng, G.; Yang, D.; Zheng, Z.; Zhao, Y. Implication of lymph node staging in migration and different treatment strategies for stage T2N0M0 and T1N1M0 resected gastric cancer: A SEER population analysis. Clin. Transl. Oncol. 2019, 21, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Lanczky, A.; Gyorffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Szasz, A.M.; Lanczky, A.; Nagy, A.; Forster, S.; Hark, K.; Green, J.E.; Boussioutas, A.; Busuttil, R.; Szabo, A.; Gyorffy, B. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 2016, 7, 49322–49333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, Y.C.; Fang, W.L.; Wang, R.F.; Li, A.F.; Yang, M.H.; Wu, C.W.; Shyr, Y.M.; Huang, K.H. Clinicopathological differences in signet ring cell adenocarcinoma between early and advanced gastric cancer. Gastric Cancer 2019, 22, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Kwa, M.; Makris, A.; Esteva, F.J. Clinical utility of gene-expression signatures in early stage breast cancer. Nat. Rev. Clin. Oncol. 2017, 14, 595–610. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.L.; Xiong, Y.F.; Shi, Y.; Li, Z.Y.; Li, J.; Zhang, X.; Li, H.Y. Development and validation of nomograms integrating immune-related genomic signatures with clinicopathologic features to improve prognosis and predictive value of triple-negative breast cancer: A gene expression-based retrospective study. Cancer Med. 2019, 8, 686–700. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Taheri, M. Long non-coding RNA signature in gastric cancer. Exp. Mol. Pathol. 2020, 113, 104365. [Google Scholar] [CrossRef]
- Frilling, A.; Modlin, I.M.; Kidd, M.; Russell, C.; Breitenstein, S.; Salem, R.; Kwekkeboom, D.; Lau, W.Y.; Klersy, C.; Vilgrain, V.; et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014, 15, e8–e21. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhang, Y.; Ding, J.; Wu, K.; Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010, 59, 579–585. [Google Scholar] [CrossRef]
- Bao, B.; Zheng, C.; Yang, B.; Jin, Y.; Hou, K.; Li, Z.; Zheng, X.; Yu, S.; Zhang, X.; Fan, Y.; et al. Identification of Subtype-Specific Three-Gene Signature for Prognostic Prediction in Diffuse Type Gastric Cancer. Front. Oncol. 2019, 9, 1243. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA sequencing: New technologies and applications in cancer research. J. Hematol. Oncol. 2020, 13, 166. [Google Scholar] [CrossRef]
- Dentro, S.C.; Leshchiner, I.; Haase, K.; Tarabichi, M.; Wintersinger, J.; Deshwar, A.G.; Yu, K.; Rubanova, Y.; Macintyre, G.; Demeulemeester, J.; et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021, 184, 2239–2254 e2239. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Johnson, A.M.; Dumbrava, E.E.I.; Raghav, K.; Balaji, K.; Bhatt, M.; Murthy, R.K.; Rodon, J.; Piha-Paul, S.A. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clin. Cancer Res. 2019, 25, 2033–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, R.; Zhang, Y.; Ballas, M.; Siddiqui, M.K.; Gupta, P.; Barker, C.; Midha, A.; Walker, J. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 2017, 112, 200–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malekan, M.; Ebrahimzadeh, M.A. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr. Top. Med. Chem. 2022, 22, 891–920. [Google Scholar] [CrossRef]
- Qing, X.; Xu, W.; Liu, S.; Chen, Z.; Ye, C.; Zhang, Y. Molecular Characteristics, Clinical Significance, and Cancer Immune Interactions of Angiogenesis-Associated Genes in Gastric Cancer. Front. Immunol. 2022, 13, 843077. [Google Scholar] [CrossRef]
- Bai, Y.; Wei, C.; Zhong, Y.; Zhang, Y.; Long, J.; Huang, S.; Xie, F.; Tian, Y.; Wang, X.; Zhao, H. Development and Validation of a Prognostic Nomogram for Gastric Cancer Based on DNA Methylation-Driven Differentially Expressed Genes. Int. J. Biol. Sci. 2020, 16, 1153–1165. [Google Scholar] [CrossRef]
- Nie, K.; Zheng, Z.; Wen, Y.; Shi, L.; Xu, S.; Wang, X.; Zhou, Y.; Fu, B.; Li, X.; Deng, Z.; et al. Construction and validation of a TP53-associated immune prognostic model for gastric cancer. Genomics 2020, 112, 4788–4795. [Google Scholar] [CrossRef]
- Liu, D.; Ma, X.; Yang, F.; Xiao, D.; Jia, Y.; Wang, Y. Discovery and validation of methylated-differentially expressed genes in Helicobacter pylori-induced gastric cancer. Cancer Gene Ther. 2020, 27, 473–485. [Google Scholar] [CrossRef]
- Menyhart, O.; Pongor, L.S.; Gyorffy, B. Mutations Defining Patient Cohorts With Elevated PD-L1 Expression in Gastric Cancer. Front. Pharmacol. 2018, 9, 1522. [Google Scholar] [CrossRef] [PubMed]
- Judge, S.M.; Deyhle, M.R.; Neyroud, D.; Nosacka, R.L.; D’Lugos, A.C.; Cameron, M.E.; Vohra, R.S.; Smuder, A.J.; Roberts, B.M.; Callaway, C.S.; et al. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Res. 2020, 80, 1861–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, F.C.; Still, E.; Koche, R.P.; Yim, C.Y.; Takao, S.; Cifani, P.; Reed, C.; Gunasekera, S.; Ficarro, S.B.; Romanienko, P.; et al. MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov. 2018, 8, 478–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarumoto, Y.; Lu, B.; Somerville, T.D.D.; Huang, Y.H.; Milazzo, J.P.; Wu, X.S.; Klingbeil, O.; El Demerdash, O.; Shi, J.; Vakoc, C.R. LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia. Mol. Cell 2018, 69, 1017–1027 e1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Chen, H.; Ruan, Y.; Zeng, X.; Liu, F. High Expression of TRIM15 Is Associated with Tumor Invasion and Predicts Poor Prognosis in Patients with Gastric Cancer. J. Investig. Surg. 2020, 34, 853–861. [Google Scholar] [CrossRef]
Datasets | Platform | Case No. | Sample Size | Submitter | Application |
GSE22377 | (G-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array | 43 | 24 intestinal 19 diffuse | Förster S, MDC, Berlin, Germany | Identification of DEGs |
GSE38749 | (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array | 15 | 4 intestinal 10 diffuse 1 mixed | Pasini FS, Faculdade de Medicina da USP, São Paulo, Brazil | Identification of DEGs |
GSE47007 | (HG_U95Av2) Affymetrix Human Genome U95 Version 2 Array | 30 | 18 intestinal 12 diffuse | Sasaki H, National Cancer Center Reseach Institute, Tokyo, Japan | Identification of DEGs |
GSE62254 | (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array | 300 | 146 intestinal 134 diffuse 17 mixed 3 indeterminate | Nebozhyn M, Merck, Inc., PA, USA | Validation |
Clinical Features | COL4A3 Expression | p Value | MEF2C Expression | p Value | TRIM15 Expression | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
High | Low | High | Low | High | Low | |||||
Age | ≤60 | 32 | 36 | 0.151 | 45 | 23 | 0.016 * | 31 | 37 | 0.014 * |
>60 | 23 | 43 | 30 | 36 | 44 | 22 | ||||
Gender | Male | 28 | 32 | 0.234 | 38 | 22 | 0.122 | 31 | 29 | 0.366 |
Female | 27 | 47 | 37 | 37 | 44 | 30 | ||||
Depth of invasion | T2 | 18 | 46 | 0.014 * | 25 | 39 | 0.001 ** | 40 | 24 | |
T3 | 32 | 28 | 43 | 17 | 31 | 29 | ||||
T4 | 5 | 5 | 7 | 3 | 4 | 6 | ||||
Lymph node | N0 | 4 | 4 | 0.178 | 5 | 3 | 0.33 | 4 | 4 | 0.678 |
metastasis | N1 | 16 | 37 | 25 | 28 | 33 | 20 | |||
N2 | 18 | 23 | 27 | 14 | 22 | 19 | ||||
N3 | 17 | 15 | 18 | 14 | 16 | 16 | ||||
Distant metastasis | M0 | 45 | 69 | 0.377 | 60 | 54 | 0.063 | 64 | 50 | 0.925 |
M1 | 10 | 10 | 15 | 5 | 11 | 9 | ||||
AJCC stage | I | 1 | 4 | 0.59 | 2 | 3 | 0.008 ** | 4 | 1 | 0.51 |
II | 8 | 26 | 11 | 23 | 21 | 13 | ||||
III | 23 | 26 | 33 | 16 | 27 | 22 | ||||
IV | 23 | 23 | 29 | 17 | 23 | 23 |
Characteristics | HR | 95% CI | p Value | |
---|---|---|---|---|
Age | 1.005 | 0.987–1.023 | 0.617 | |
Gender | Female | 1 | ||
Male | 0.7712 | 0.495–1.203 | 0.252 | |
Depth of Invasion | T2 | 1 | ||
T3 | 1.906 | 1.181–3.078 | 0.008 ** | |
T4 | 2.769 | 1.301–5.893 | 0.008 ** | |
Lymph Node of Metastasis | N0 | 1 | ||
N1 | 1.488 | 0.346–6.398 | 0.593 | |
N2 | 3.177 | 0.753–13.411 | 0.115 | |
N3 | 11.017 | 2.608–46.539 | 0.001 ** | |
Distant Metastasis | M0 | 1 | ||
M1 | 3.677 | 2.172–6.224 | <0.0001 *** | |
Gene Expression | COL4A3 expression | 1.281 | 0.685–2.395 | 0.438 |
MEF2C expression | 3.97 | 1.512–10.430 | 0.005 ** | |
TRIM15 expression | 0.2861 | 0.104–0.790 | 0.015 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xu, J.; Yin, S.; Wang, H.; Liu, G.; Jin, X.; Zhang, J.; Wang, H.; Wang, H.; Li, H.; et al. Identification of a Two-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival in Diffuse-Type Gastric Cancer. Curr. Oncol. 2023, 30, 171-183. https://doi.org/10.3390/curroncol30010014
Chen S, Xu J, Yin S, Wang H, Liu G, Jin X, Zhang J, Wang H, Wang H, Li H, et al. Identification of a Two-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival in Diffuse-Type Gastric Cancer. Current Oncology. 2023; 30(1):171-183. https://doi.org/10.3390/curroncol30010014
Chicago/Turabian StyleChen, Songyao, Jiannan Xu, Songcheng Yin, Huabin Wang, Guangyao Liu, Xinghan Jin, Junchang Zhang, Huijin Wang, Han Wang, Huan Li, and et al. 2023. "Identification of a Two-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival in Diffuse-Type Gastric Cancer" Current Oncology 30, no. 1: 171-183. https://doi.org/10.3390/curroncol30010014
APA StyleChen, S., Xu, J., Yin, S., Wang, H., Liu, G., Jin, X., Zhang, J., Wang, H., Wang, H., Li, H., Liang, J., He, Y., & Zhang, C. (2023). Identification of a Two-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival in Diffuse-Type Gastric Cancer. Current Oncology, 30(1), 171-183. https://doi.org/10.3390/curroncol30010014