The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Biomass Collection
Integral Equipment for the Collection and Treatment of Biomass “Retrabio”
- ○
- An automotive vehicle with integral 8 × 8 traction with mechanical/hydrostatic transmission and 3 differentials with a lock and a diesel engine with 300 hp power.
- ○
- A container of 24 m3, located in the rear part of the vehicle, where the collected and crushed material is stored. A hydraulic system allows the lateral discharge of the material.
- ○
- A grinding head, located in the front of the equipment, collects and crushes the material. It has a hammer head with a suction system, which allows the collection of scrub biomass, with a working width of 2.1 m. Depending on the type of biomass to be processed, it can easily be replaced by another type of head, by using a hydraulic power transmission system.
Berti Picker
Peruzzo Cobra Collina
2.2.2. Physicochemical Characterization
Ultimate and Proximate Analyses
Calorific Value
Inorganic Elements
2.2.3. Biomass Pretreatment
Drying
Granulometric Reduction
Biomass Classification
Densification
2.2.4. Valorization Tests
- A 60-kW multi-fuel boiler (hot source) equipped with a caterpillar burner, fed by a hopper and responsible for generating the thermal energy needed to produce electricity in the ORC (provided by hot water up to 90 °C).
- An ORC module thermal machine based on an organic Rankine cycle with a maximum power of 4 electric kW and designed for the use of heat at low temperature (up to 100 °C in water) by its conversion into electricity. This system employs an organic refrigerant fluid (R245fa).
3. Results
3.1. Energy Balance
3.2. Physicochemical Characterization
3.3. Valorization Tests
4. Discussion
4.1. Energy Balance
4.2. Physicochemical Characterization
4.3. Valorization Tests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serrano, M. Balance Energético 2017 y Perspectivas 2018; APPA: Madrid, Spain, 2018. [Google Scholar]
- Red Eléctrica de España. El sistema eléctrico Español 2017; Red Eléctrica de España: Madrid, Spain, 2017. [Google Scholar]
- Associação Portuguesa de Energias Renováveis. Portugal Precisa da Nossa Energia; Associação Portuguesa de Energias Renováveis: Lisbon, Portugal, 2018. [Google Scholar]
- Consejo de la Unión Europea. Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de Abril de 2009 Relativa al Fomento del Uso de Energía Procedente de Fuentes Renovables y por la que se Modifican y se Derogan las Directivas 2001/77/CE y 2003/30/CE; Consejo de la Unión Europea: Brussels, Belgium, 2009. [Google Scholar]
- APPA. Estudio del Impacto las Energías Renovables Macroeconómico en España; APPA: Madrid, Spain, 2016. [Google Scholar]
- Febrero, L.; Granada, E.; Regueiro, A.; Míguez, J. Influence of combustion parameters on fouling composition after wood pellet burning in a lab-scale low-power boiler. Energies 2015, 8, 9794–9816. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Bram, S.; Delattin, F.; Laha, P.; Vandendael, I. Agro-pellets for domestic heating boilers: Standard laboratory and real life performance. Appl. Energ. 2012, 90, 17–23. [Google Scholar] [CrossRef]
- Fernandes, U.; Costa, M. Potential of biomass residues for energy production and utilization in a region of Portugal. Biomass Bioenergy 2010, 34, 661–666. [Google Scholar] [CrossRef]
- Carneiro, P.; Ferreira, P. The economic, environmental and strategic value of biomass. Renew. Energy 2012, 44, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Unión por la Biomasa. Balance Socioeconómico de las Biomasas en España 2017–2021; Unión por la Biomasa: Madrid, Spain, 2018. [Google Scholar]
- INEGA. Análisis de la Viabilidad del Mercado de Biomasa en Galicia y Norte de Portugal; INEGA: Santiago de Compostela, Spain, 2012. [Google Scholar]
- Spinelli, R.; Nati, C.; Pari, L.; Mescalchin, E.; Magagnotti, N. Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl. Energy 2012, 89, 374–379. [Google Scholar] [CrossRef]
- Xunta de Galicia. Superficies Agrícolas en Galicia. 2017. Available online: http://mediorural.xunta.gal/es/institucional/estatisticas/medio_rural/superficies_agricolas/ (accessed on 1 September 2019).
- Fernández, R. Características y Parámetros Analíticos para la Obtención de Biocombustibles a Partir de los Residuos en la Producción Industrial de Actinidia Chinensis. Ph.D. Thesis, Universidad de Vigo, Vigo, Spain, 2014. [Google Scholar]
- Instituto Nacional de Estatísticas. Estatísticas Agrícolas-2017; Instituto Nacional de Estatísticas: Lisbon, Portugal, 2018. [Google Scholar]
- D´Accadia, D.; Sasso, M.; Sibilio, S.; Vanoli, L. Micro-combined heat and power in residential and light commercial applications. Appl. Therm. Eng. 2003, 23, 1247–1259. [Google Scholar] [CrossRef]
- Fenercom. Guía Básica de Microcogeneración; Fenercom: Madrid, Spain, 2012. [Google Scholar]
- HRU-4. Available online: http://enerbasque.com/ (accessed on 1 November 2019).
- UNE-EN ISO 18134-2. Solid Biofuels-Determination of Moisture Content-Oven Dry Method-Part 2: Total Moisture-Simplified Method; AENOR: Madrid, Spain, 2017. [Google Scholar]
- UNE-EN ISO 18122. Solid Biofuels—Determination of Ash Content; AENOR: Madrid, Spain, 2016. [Google Scholar]
- UNE-EN ISO 16948. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen; AENOR: Madrid, Spain, 2015. [Google Scholar]
- UNE-EN ISO 16994. Solid Biofuels—Determination of Total Content of Sulfur and Chlorine; AENOR: Madrid, Spain, 2017. [Google Scholar]
- UNE-EN ISO 18125. Solid Biofuels—Determination of Calorific Value; AENOR: Madrid, Spain, 2018. [Google Scholar]
- UNE-EN ISO 16967. Solid Biofuels—Determination of Major Elements-Al, Ca, Fe, Mg, P, K, Si, Na and Ti; AENOR: Madrid, Spain, 2015. [Google Scholar]
- UNE-EN ISO 16968. Solid Biofuels—Determination of Minor Elements; AENOR: Madrid, Spain, 2015. [Google Scholar]
- Zhang, X.; Chen, Q.; Bradford, R.; Sharifi, V.; Swithenbank, J. Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler. Fuel Process. Technol. 2010, 91, 1491–1499. [Google Scholar] [CrossRef]
- Sippula, O.; Hokkinen, J.; Puustinen, H.; Yli-Pirilä, P.; Jokiniemi, J. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 2009, 43, 4855–4864. [Google Scholar] [CrossRef]
- UNE-EN ISO 17225-2. Solid Biofuels—Fuel Specifications and Classes–Part 2: Graded Wood Pellets; AENOR: Madrid, Spain, 2014. [Google Scholar]
- Royo, J.; Canalís, P.; Quintana, D.; Díaz-Ramírez, M.; Sin, A.; Rezeau, A. Experimental study on the ash behaviour in combustion of pelletized residual agricultural biomass. Fuel 2019, 239, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.; Wopienka, E.; Pointner, C.; Lundgren, J.; Verma, V.K.; Haslinger, W.; Schmidl, C. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 2013, 104, 286–296. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997, 12, 211–224. [Google Scholar] [CrossRef]
- Houshfar, E.; Løvås, T.; Skreiberg, Ø. Experimental investigation on NOx reduction by primary measures in biomass combustion: Straw, peat, sewage sludge, forest residues and wood pellets. Energies 2012, 5, 270–290. [Google Scholar] [CrossRef] [Green Version]
- Vicente, E.; Duarte, M.; Nunes, T.; Tarelho, L.; Alves, C. Particulate and Gaseous Emissions from Residential Pellet Combustion. In Proceedings of the SPEIC14—Towards Sustainable Combustion, Lisbon, Portugal, 19–21 November 2014; pp. 19–21. [Google Scholar]
- Morán, J.C.; Míguez, J.L.; Porteiro, J.; Patiño, D.; Granada, E. Low-Quality Fuels for Small-Scale Combustion Boilers: An Experimental Study. Energy Fuels 2015, 29, 3064–3081. [Google Scholar] [CrossRef]
- Lamberg, H.; Tissari, J.; Jokiniemi, J.; Sippula, O. Fine particle and gaseous emissions from a small-scale boiler fueled by pellets of various raw materials. Energy Fuels 2013, 27, 7044–7053. [Google Scholar] [CrossRef]
- Tissari, J.; Sippula, O.; Kouki, J.; Vuorio, K.; Jokiniemi, J. Fine particle and gas emissions from the combustion of agricultural fuels fired in a 20 kW burner. Energy Fuels 2008, 22, 2033–2042. [Google Scholar] [CrossRef]
- Cardozo, E.; Erlic, C.; Alejo, L.; Torsten, H. Combustion of agricultural residues: An experimental study for small-scale applications. Fuel 2014, 115, 778–787. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Yu, C.; Thy, P.; Wang, L.; Anderson, S.N.; VanderGheynst, J.S.; Upadhyaya, S.K.; Jenkins, B.M. Influence of leaching pretreatment on fuel properties of biomass. Fuel Process. Technol. 2014, 128, 43–53. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F.; González, M.; Mota-Babiloni, A. Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources. Energy 2015, 82, 269–276. [Google Scholar] [CrossRef]
- Qiu, G.; Shao, Y.; Li, J.; Liu, H.; Riffat, S.B. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012, 96, 374–382. [Google Scholar] [CrossRef] [Green Version]
Scrub Biomass Harvested with Retrabio Equipment. | Energy Consumption | Unit Conversion to Primary Energy | kWh/Dry ton | |
---|---|---|---|---|
Phase 1—Harvest: between 3.8 to 5.9 L of diesel for dry ton of scrub biomass (it depends on several factors like slope of terrain, height of the scrubs, distance to the discharge area,…). | 3.8 to 5.9 L diesel/dry ton biomass | 10.28 kWh/L diesel | 39 | 61 |
Phase 2—Transport to plant (in a truck): for a medium distance of 50 km, about 3–4 L of diesel for dry ton of biomass are required. | 3 to 4 liters diesel/dry ton biomass | 10.28 kWh/L diesel | 31 | 41 |
Phase 3—Plant process: | ||||
Biomass drying: we suppose 100% forced dry (normally low quality biomass is used as fuel). However in the factories is usually to combine an initial air drying, to make the process cheaper. | 600,000 to 650,000 kcal/dry ton biomass | 0.00116 kWh/kcal | 698 | 756 |
Grinding | 20–40 kWh electrical/dry ton biomass | 2.21 * kWh/kWh electrical | 44 | 88 |
Densification | 55–75 kWh electrical/dry ton biomass | 2.21 kWh/kWh electrical | 122 | 166 |
T. CONSUMPTION (kWh/dry ton biomass) | 934 | 1112 | ||
Energy content. Dry scrub biomass. | 19.5 MJ/dry kg | 0.2778 kWh/MJ | 5417 | |
T. PRODUCTION (kWh/dry ton biomass) | 5417 | |||
ENERGY BALANCE (kWh/dry ton biomass) | 4483 | 4305 |
Forest | Agricultural | Reference Fuel | |||||
---|---|---|---|---|---|---|---|
Gorse Scrub | Broom Scrub | Heather Scrub | Forest Scrub | Pruning Kiwi | Pruning Vine | Wood Chips | |
%Humidity | 45.8 | 51.2 | 38.6 | 48.2 | 57.9 | 44.7 | 8.8 |
%Ashes | 1.1 | 1.1 | 1.6 | 1.1 | 2.5 | 2.6 | 0.5 |
LHV d.b * (MJ/kg) | 19.48 | 19.54 | 20.13 | 19.72 | 17.39 | 18.19 | 18.51 |
LHV a.r ** (MJ/kg) | 9.49 | 8.33 | 11.43 | 9.03 | 5.23 | 8.93 | - |
LHV10% *** (MJ/kg) | 17.28 | 17.34 | 17.87 | 17.50 | 15.40 | 16.13 | - |
COMBUSTION | SAMPLE | %N | %C | %H | %S | %Cl |
---|---|---|---|---|---|---|
1 | Pruning vine | 0.70 | 44.62 | 5.77 | 0.0500 | 0.0266 |
2 | 0.62 | 44.71 | 5.68 | |||
3 | Pruning kiwi | 0.47 | 44.69 | 5.65 | 0.0577 | 0.0927 |
4 | 0.51 | 45.16 | 6.20 | |||
5 | Broom scrub | 1.38 | 46.13 | 6.32 | 0.0566 | 0.1726 |
6 | 1.41 | 46.53 | 6.51 | |||
7 | Forest scrub | 0.95 | 48.55 | 6.71 | 0.0648 | 0.0313 |
8 | 0.96 | 48.35 | 6.57 | |||
9 | Heather scrub | 0.56 | 48.14 | 6.36 | 0.0594 | 0.0595 |
10 | 0.58 | 48.55 | 6.15 | |||
11 | Gorse scrub | 0.84 | 46.70 | 6.22 | 0.0459 | 0.0724 |
12 | 0.85 | 46.79 | 6.25 | |||
Reference fuel | Wood chips | 0.16 | 49.55 | 6.5 | 0.0200 | 0.0200 |
Majority Elements (mg/kg) | SAMPLE | Na | Mg | Al | Si | P | K | Ca | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1 | Pruning vine | 252 | 883 | 659 | 1017 | 859 | 5197 | 8417 | 35 | 149 |
2 | Pruning kiwi | 213 | 1224 | 428 | 781 | 1019 | 5053 | 5156 | 11 | 99 |
3 | Broom scrub | 212 | 863 | 108 | 467 | 895 | 4610 | 1406 | 237 | 63 |
4 | Forest scrub | 223 | 626 | 920 | 1660 | 627 | 2616 | 3340 | 541 | 295 |
5 | Heather scrub | 308 | 508 | 1082 | 2373 | 331 | 2273 | 2222 | 446 | 343 |
6 | Gorse scrub | 576 | 991 | 108 | 922 | 493 | 2527 | 1849 | 159 | 97 |
Reference fuel | Wood chips | 76 | 240 | 106 | <6 | 78 | 540 | 1400 | 64 | 66 |
Minority Elements (mg/kg) | Sample | Cr | Cu | Ni | Zn | Hg |
---|---|---|---|---|---|---|
1 | Pruning vine | 3.62 | 26.93 | 1.57 | 37.80 | <0.1 |
2 | Pruning kiwi | 1.82 | 35.62 | 1.62 | 30.89 | <0.1 |
3 | Broom scrub | 1.01 | 8.38 | 3.03 | 29.80 | <0.1 |
4 | Forest scrub | 1.74 | 4.07 | 1.45 | 31.47 | <0.1 |
5 | Heather scrub | 2.38 | 6.95 | 4.19 | 10.38 | <0.1 |
6 | Gorse scrub | <1 | 3.01 | 1.83 | 15.87 | <0.1 |
Reference fuel | Wood chips | <1 | <1 | 2.08 | 5.25 | <0.1 |
Evaporator temperature water inlet (°C) | 98 |
Condenser temperature water inlet (°C) | 22.2 |
Gross electrical power (kW) | 4.05 |
Net electrical power (kW) | 3.51 |
Thermal power captured (kW) | 39.03 |
Useful heat produced (kW) | 34.35 |
Gross electrical efficiency (%) | 10.39 |
Net electrical efficiency (%)* | 8.99 |
Thermal efficiency (%) | 88.03 |
Cogeneration efficiency (%) | 97.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies 2020, 13, 2516. https://doi.org/10.3390/en13102516
Torreiro Y, Pérez L, Piñeiro G, Pedras F, Rodríguez-Abalde A. The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies. 2020; 13(10):2516. https://doi.org/10.3390/en13102516
Chicago/Turabian StyleTorreiro, Yarima, Leticia Pérez, Gonzalo Piñeiro, Francisco Pedras, and Angela Rodríguez-Abalde. 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy" Energies 13, no. 10: 2516. https://doi.org/10.3390/en13102516
APA StyleTorreiro, Y., Pérez, L., Piñeiro, G., Pedras, F., & Rodríguez-Abalde, A. (2020). The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies, 13(10), 2516. https://doi.org/10.3390/en13102516