Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey
Abstract
:1. Introduction
1.1. An Overview of the Review and Overall Significance
1.2. Review Methodology
1.3. Key Contributions and Review Structure
- A novel classification of methods for constructing interaction graphs into two categories: data-driven and electric distance-based approaches as well as multiple sub-categories as shown in Figure 1.
- A comprehensive study and detailed discussion on the techniques used in the construction of interaction graphs. Moreover, key properties and limitations of each type of interaction graph is discussed. Suggestions on addressing the limitations and possible future directions are presented.
- A brief overview of cascading failure analysis in power grids using the constructed interaction graphs are presented.
2. Definitions
2.1. Cascading Failures
2.2. Models of Cascading Failures
2.3. Physical Topology-Based Graphs of Power Grids
3. Graph of Interactions
3.1. Data-Driven Methods for Interaction Graphs
3.1.1. Interaction Graphs Based on Outage Sequences in Cascading Failures
3.1.1.1. Interaction Graph Based on Consecutive Failures
3.1.1.2. Interaction Graph Using Generation-Based Analysis of Failures
3.1.1.3. Influence-Based Interaction Graph
3.1.1.4. Interaction Graph of Multiple and Simultaneous Failures
3.1.2. Risk Graphs for Interaction Graph
3.1.3. Correlation-Based Interaction Graph
3.1.4. Comparison of Data-Driven Methods for Constructing Interaction Graphs
3.2. Electric Distance-Based Interaction Graphs
3.2.1. Outage Condition-Based Interaction Graph
3.2.2. Non-Outage Condition-Based Interaction Graphs
3.2.2.1. Impedance-Based Interaction Graph
3.2.2.2. Jacobian Interaction Graph
3.2.3. Key Properties and Limitations of Electric Distance-Based Interaction Graphs
4. Reliability Analysis Using Interaction Graphs of Power Grids
4.1. Critical Component Analysis
4.1.1. Critical Component Identification
4.1.1.1. Critical Component Identification Using Standard Centrality Measures
4.1.1.2. Critical Component Identification Using New Centrality Measures
4.1.2. Studying the Effect of Line Upgrades and Line Additions on Reliability of Power Grids
4.1.3. Analyzing Response to Attack/Failure Scenarios
4.2. Prediction of Cascade Sizes
4.3. Studying Patterns and Structures in Interactions
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Baldick, R.; Chowdhury, B.; Dobson, I.; Dong, Z.; Gou, B.; Hawkins, D.; Huang, H.; Joung, M.; Kirschen, D.; Li, F.; et al. Initial review of methods for cascading failure analysis in electric power transmission systems (IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures). In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM)—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar]
- Hines, P.; Balasubramaniam, K.; Sanchez, E.C. Cascading failures in power grids. IEEE Potentials 2009, 28, 24–30. [Google Scholar] [CrossRef]
- U.S.-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations; U.S. Department of Energy: Washington, DC, USA; Natural Resources Canada: Ottawa, ON, Canada, 2004.
- Berizzi, A. The Italian 2003 blackout. In Proceedings of the IEEE Power Engineering Society General Meeting (PESGM), Denver, CO, USA, 6–10 June 2004; pp. 1673–1679. [Google Scholar]
- Ilho, J. Brazilian blackout 2009 blackout watch. PAC World Magazine, 4 April 2010; p. 1. [Google Scholar]
- Lai, L.L.; Zhang, H.T.; Lai, C.S.; Xu, F.Y.; Mishra, S. Investigation on July 2012 Indian blackout. In Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013; pp. 92–97. [Google Scholar]
- Dobson, I.; Carreras, B.A.; Lynch, V.E.; Newman, D.E. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 026103. [Google Scholar] [CrossRef]
- Hines, P.; Cotilla-Sanchez, E.; Blumsack, S. Topological models and critical slowing down: Two approaches to power system blackout risk analysis. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar]
- DeMarco, C.L. A phase transition model for cascading network failure. IEEE Control Syst. Mag. 2001, 21, 40–51. [Google Scholar]
- Rahnamay-Naeini, M.; Wang, Z.; Ghani, N.; Mammoli, A.; Hayat, M.M. Stochastic analysis of cascading-failure dynamics in power grids. IEEE Trans. Power Syst. 2014, 29, 1767–1779. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Dobson, I. Using transmission line outage data to estimate cascading failure propagation in an electric power system. IEEE Trans. Circuits Syst. II Express Briefs 2008, 55, 927–931. [Google Scholar] [CrossRef]
- Dobson, I. Estimating the propagation and extent of cascading line outages from utility data with a branching process. IEEE Trans. Power Syst. 2012, 27, 2146–2155. [Google Scholar] [CrossRef]
- Hines, P.D.; Dobson, I.; Cotilla-Sanchez, E.; Eppstein, M. “Dual Graph” and “Random Chemistry” methods for cascading failure analysis. In Proceedings of the 46th IEEE Hawaii Intl. Conference on System Sciences (HICSS), Wailea, HI, USA, 7–10 January 2013; pp. 2141–2150. [Google Scholar]
- Wei, X.; Zhao, J.; Huang, T.; Bompard, E. A novel cascading faults graph based transmission network vulnerability assessment method. IEEE Trans. Power Syst. 2018, 33, 2995–3000. [Google Scholar] [CrossRef]
- Wei, X.; Gao, S.; Huang, T.; Bompard, E.; Pi, R.; Wang, T. Complex network-based cascading faults graph for the analysis of transmission network vulnerability. IEEE Trans. Ind. Inform. 2018, 15, 1265–1276. [Google Scholar] [CrossRef]
- Wei, X.; Gao, S.; Huang, T.; Wang, T.; Fan, W. Identification of two vulnerability features: A new framework for electrical networks based on the load redistribution mechanism of complex networks. Complexity 2019, 2019, 3531209. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wei, X.; Huang, T.; Wang, J.; Peng, H.; Pérez-Jiménez, M.J.; Valencia-Cabrera, L. Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration. IEEE Access 2019, 7, 12798–12808. [Google Scholar] [CrossRef]
- Zang, T.; Lei, J.; Wei, X.; Huang, T.; Wang, T.; Pérez-Jiménez, M.J.; Lin, H. Adjacent graph based vulnerability assessment for electrical networks considering fault adjacent relationships among branches. IEEE Access 2019, 7, 88927–88936. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; Zhang, X.; Liang, C.; Wang, H.; Cui, W. A graph-based model for transmission network vulnerability analysis. IEEE Syst. J. 2019, 14, 1447–1456. [Google Scholar] [CrossRef]
- Wei, X.; Gao, S.; Huang, T.; Wang, T.; Zang, T. Electrical network operational vulnerability evaluation based on small-world and scale-free properties. IEEE Access 2019, 7, 181072–181082. [Google Scholar] [CrossRef]
- Qi, J.; Sun, K.; Mei, S. An interaction model for simulation and mitigation of cascading failures. IEEE Trans. Power Syst. 2015, 30, 804–819. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Wang, J.; Sun, K. Efficient estimation of component interactions for cascading failure analysis by EM algorithm. IEEE Trans. Power Syst. 2018, 33, 3153–3161. [Google Scholar] [CrossRef]
- Ju, W.; Qi, J.; Sun, K. Simulation and analysis of cascading failures on an NPCC power system test bed. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Ju, W.; Sun, K.; Qi, J. Multi-layer interaction graph for analysis and mitigation of cascading outages. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 239–249. [Google Scholar] [CrossRef]
- Chen, C.; Ju, W.; Sun, K.; Ma, S. Mitigation of cascading outages using a dynamic interaction graph-based optimal power flow model. IEEE Access 2019, 7, 168637–168648. [Google Scholar] [CrossRef]
- Luo, C.; Yang, J.; Sun, Y.; Yan, J.; He, H. Identify critical branches with cascading failure chain statistics and hypertext-induced topic search algorithm. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Hines, P.D.; Dobson, I.; Rezaei, P. Cascading power outages propagate locally in an influence graph that is not the actual grid topology. IEEE Trans. Power Syst. 2017, 32, 958–967. [Google Scholar]
- Zhou, K.; Dobson, I.; Hines, P.D.; Wang, Z. Can an influence graph driven by outage data determine transmission line upgrades that mitigate cascading blackouts? In Proceedings of the IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Nakarmi, U.; Rahnamay-Naeini, M. Analyzing power grids’ cascading failures and critical components using interaction graphs. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Nakarmi, U.; Rahnamay-Naeini, M.; Khamfroush, H. Critical component analysis in cascading failures for power grids using community structures in interaction graphs. IEEE Trans. Netw. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Zhou, K.; Dobson, I.; Wang, Z.; Roitershtein, A.; Ghosh, A.P. A Markovian influence graph formed from utility line outage data to mitigate cascading. IEEE Trans. Power Syst. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.G.; Zhong, Q.; Zhang, Y. State transition graph of cascading electrical power grids. In Proceedings of the IEEE Power Engineering Society General Meeting (PESGM), Tampa, FL, USA, 24–28 June 2007; pp. 1–7. [Google Scholar]
- Chang, L.; Wu, Z. Performance and reliability of electrical power grids under cascading failures. Int. J. Electr. Power Energy Syst. 2011, 33, 1410–1419. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.; Song, Y. Temporal difference learning based critical component identifying method with cascading failure data in power systems. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Li, L.; Wu, H.; Song, Y.; Song, D.; Liu, Y. Quantify the impact of line capacity temporary expansion on blackout risk by the state-failure-network method. IEEE Access 2019, 7, 183049–183060. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.; Song, Y.; Liu, Y. A state-failure-network method to identify critical components in power systems. Electr. Power Syst. Res. 2020, 181, 106192. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, L.; Wu, H. Identifying critical patterns of cascading failure in power systems based on sequential pattern mining with gap constraints. In Proceedings of Purple Mountain Forum International Forum on Smart Grid Protection and Control; Springer: Berlin, Germany, 2020; pp. 837–855. [Google Scholar]
- Zhu, Y.; Yan, J.; Sun, Y.; He, H. Risk-aware vulnerability analysis of electric grids from attacker’s perspective. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 24–27 Febrary 2013; pp. 1–6. [Google Scholar]
- Zhu, Y.; Yan, J.; Sun, Y.L.; He, H. Revealing cascading failure vulnerability in power grids using risk-graph. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 3274–3284. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, J.; Tang, Y.; Sun, Y.L.; He, H. Resilience analysis of power grids under the sequential attack. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2340–2354. [Google Scholar] [CrossRef]
- Kaplunovich, P.; Turitsyn, K.S. Statistical properties and classification of N-2 contingencies in large scale power grids. In Proceedings of the 47th IEEE Hawaii Intl. Conference on System Sciences (HICSS), Waikoloa, HI, USA, 6–9 January 2014; pp. 2517–2526. [Google Scholar]
- Yang, Y.; Nishikawa, T.; Motter, A.E. Vulnerability and cosusceptibility determine the size of network cascades. Phys. Rev. Lett. 2017, 118, 048301. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Liang, C.; Low, S.H. Monotonicity properties and spectral characterization of power redistribution in cascading failures. In Proceedings of the 55th IEEE Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 3–6 October 2017; pp. 918–925. [Google Scholar]
- Guo, L.; Liang, C.; Zocca, A.; Low, S.H.; Wierman, A. Failure localization in power systems via tree partitions. In Proceedings of the IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 6832–6839. [Google Scholar]
- Ma, Z.; Liu, F.; Shen, C.; Wang, Z.; Mei, S. Fast searching strategy for critical cascading paths toward blackouts. IEEE Access 2018, 6, 36874–36886. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, F.; Shen, C.; Zhang, X.; Mei, S.; Gao, F. Speeding up simulations of cascading blackout in power systems by identifying high influential lines. In Proceedings of the IEEE Power & Energy Society General Meeting, (PESGM), Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Ma, Z.; Shen, C.; Liu, F.; Mei, S. Fast screening of vulnerable transmission lines in power grids: A PageRank-based approach. IEEE Trans. Smart Grid 2017, 10, 1982–1991. [Google Scholar] [CrossRef]
- Zio, E.; Golea, L.R. Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements. Reliab. Eng. Syst. Saf. 2012, 101, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Poudel, S.; Ni, Z.; Sun, W. Electrical distance approach for searching vulnerable branches during contingencies. IEEE Trans. Smart Grid 2018, 9, 3373–3382. [Google Scholar] [CrossRef]
- Hines, P.; Blumsack, S. A centrality measure for electrical networks. In Proceedings of the 41st IEEE Hawaii International Conference on System Sciences (HICSS), Waikoloa, HI, USA, 7–10 January 2008; p. 185. [Google Scholar]
- Blumsack, S.; Hines, P.; Patel, M.; Barrows, C.; Sanchez, E.C. Defining power network zones from measures of electrical distance. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Calgary, AB, Canada, 26–30 July 2009; pp. 1–8. [Google Scholar]
- Cuffe, P.; Keane, A. Visualizing the electrical structure of power Sys. IEEE Syst. J. 2015, 11, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Bompard, E.; Napoli, R.; Xue, F. Analysis of structural vulnerabilities in power transmission grids. Int. J. Crit. Infrastruct. Prot. 2009, 2, 5–12. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, B.H.; Zhang, Z.; Yin, X.G.; Wang, B. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load. Phys. A Stat. Mech. Its Appl. 2011, 390, 4692–4701. [Google Scholar] [CrossRef]
- Bompard, E.; Pons, E.; Wu, D. Extended topological metrics for the analysis of power grid vulnerability. IEEE Syst. J. 2012, 6, 481–487. [Google Scholar] [CrossRef]
- Arianos, S.; Bompard, E.; Carbone, A.; Xue, F. Power grid vulnerability: A complex network approach. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 013119. [Google Scholar] [CrossRef]
- Koç, Y.; Warnier, M.; Kooij, R.; Brazier, F. Structural vulnerability assessment of electric power grids. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control (ICNSC), Miami, FL, USA, 7–9 April 2014; pp. 386–391. [Google Scholar]
- Koc, Y.; Warnier, M.; Van Mieghem, P.; Kooij, R.E.; Brazier, F.M. The impact of the topology on cascading failures in a power grid model. Phys. A Stat. Mech. Its Appl. 2014, 402, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Koç, Y.; Kooij, R.E.; Van Mieghem, P. A network approach for power grid robustness against cascading failures. In Proceedings of the 7th IEEE International Workshop on Reliable Networks Design and Modeling (RNDM), Munich, Germany, 5–7 October 2015; pp. 208–214. [Google Scholar]
- Caro-Ruiz, C.; Mojica-Nava, E. Voltage collapse analysis in a graph theoretical framework. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT) Latin America, Montevideo, Uruguay, 5–7 October 2015; pp. 667–672. [Google Scholar]
- Caro-Ruiz, C.; Mojica-Nava, E. Centrality measures for voltage instability analysis in power networks. In Proceedings of the IEEE 2nd Colombian Conference on Automatic Control, Manizales, Colombia, 14–16 October 2015; pp. 1–6. [Google Scholar]
- Cotilla-Sanchez, E.; Hines, P.D.; Barrows, C.; Blumsack, S. Comparing the topological and electrical structure of the North American electric power infrastructure. IEEE Syst. J. 2012, 6, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Cotilla-Sanchez, E.; Hines, P.D.; Barrows, C.; Blumsack, S.; Patel, M. Multi-attribute partitioning of power networks based on electrical distance. IEEE Trans. Power Syst. 2013, 28, 4979–4987. [Google Scholar] [CrossRef]
- Vaiman, M.; Bell, K.; Chen, Y.; Chowdhury, B.; Dobson, I.; Hines, P.; Papic, M.; Miller, S.; Zhang, P. Risk assessment of cascading outages: Methodologies and challenges. IEEE Trans. Power Syst. 2012, 27, 631. [Google Scholar] [CrossRef]
- Cuadra, L.; Salcedo-Sanz, S.; Del Ser, J.; Jiménez-Fernández, S.; Geem, Z.W. A critical review of robustness in power grids using complex networks concepts. Energies 2015, 8, 9211–9265. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zheng, C.; Iu, H.H.C.; Fernando, T. A critical review of cascading failure analysis and modeling of power system. Renew. Sustain. Energy Rev. 2017, 80, 9–22. [Google Scholar] [CrossRef]
- Abedi, A.; Gaudard, L.; Romerio, F. Review of major approaches to analyze vulnerability in power system. Reliab. Eng. Syst. Saf. 2018, 183, 153–172. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A survey on power system blackout and cascading events: Research motivations and challenges. Energies 2019, 12, 682. [Google Scholar] [CrossRef] [Green Version]
- Nakarmi, U.; Rahnamay-Naeini, M.; Hossain, J.; Hasnat, A. Interaction graphs for reliability analysis of power grids: A survey. arXiv 2019, arXiv:1911.00475. [Google Scholar]
- Buldyrev, S.V.; Parshani, R.; Paul, G.; Stanley, H.E.; Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025. [Google Scholar] [CrossRef] [Green Version]
- Crucitti, P.; Latora, V.; Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. Lett. 2004, 69, 045104. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Albert, I.; Nakarado, G.L. Structural vulnerability of the North American power grid. Phys. Rev. E 2004, 69, 25103. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, Å.J. Using graph models to analyze the vulnerability of electric power networks. Risk Anal. 2006, 26, 955–969. [Google Scholar] [CrossRef]
- Hines, P.; Cotilla-Sanchez, E.; Blumsack, S. Do topological models provide good information about electricity infrastructure vulnerability? Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 033122. [Google Scholar] [CrossRef]
- Kröger, W.; Zio, E. Vulnerable Systems; Springer: London, UK, 2011. [Google Scholar] [CrossRef]
- Nakarmi, U.; Rahnamay-Naeini, M. Towards integrated infrastructures for smart city services: A story of traffic and energy aware pricing policy for charging infrastructures. In Proceedings of the International Conference on Smart Cities and Green ICT Systems SMARTGREENS, Porto, Portugal, 22–24 April 2017; pp. 208–218. [Google Scholar]
- Nakarmi, U.; Rahnamay-Naeini, M. An influence-based model for smart city’s interdependent infrastructures: Application in pricing design for EV charging infrastructures. In Smart Cities, Green Technologies, and Intelligent Transport Systems; Springer: Berlin, Germany, 2017; pp. 111–130. [Google Scholar]
- Lagonotte, P.; Sabonnadiere, J.; Leost, J.Y.; Paul, J.P. Structural analysis of the electrical system: Application to secondary voltage control in France. IEEE Trans. Power Syst. 1989, 4, 479–486. [Google Scholar] [CrossRef]
- Hasnat, A.; Rahnamay-Naeini, M. A data-driven dynamic state estimation for smart grids under DoS attack using state correlations. In Proceedings of the IEEE North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019. [Google Scholar]
- Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 Ukraine blackout: Implications for false data injection attacks. IEEE Trans. Power Syst. 2016, 32, 3317–3318. [Google Scholar] [CrossRef]
- Bialek, J.; Ciapessoni, E.; Cirio, D.; Cotilla-Sanchez, E.; Dent, C.; Dobson, I.; Henneaux, P.; Hines, P.; Jardim, J.; Miller, S.; et al. Benchmarking and validation of cascading failure analysis tools. IEEE Trans. Power Syst. 2016, 31, 4887–4900. [Google Scholar] [CrossRef] [Green Version]
- Henneaux, P.; Ciapessoni, E.; Cirio, D.; Cotilla-Sanchez, E.; Diao, R.; Dobson, I.; Gaikwad, A.; Miller, S.; Papic, M.; Pitto, A.; et al. Benchmarking quasi-steady state cascading outage analysis methodologies. In Proceedings of the IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Aksoy, S.G.; Purvine, E.; Cotilla-Sanchez, E.; Halappanavar, M. A generative graph model for electrical infrastructure networks. J. Complex Netw. 2019, 7, 128–162. [Google Scholar] [CrossRef]
- Wang, Z.; Scaglione, A.; Thomas, R.J. Electrical centrality measures for electric power grid vulnerability analysis. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5792–5797. [Google Scholar]
- Borgatti, S.P.; Everett, M.G. A graph-theoretic perspective on centrality. Soc. Netw. 2006, 28, 466–484. [Google Scholar] [CrossRef]
- Halappanavar, M.; Cotilla-Sanchez, E.; Hogan, E.; Duncan, D.; Hines, P.D. A network-of-networks model for electrical infrastructure networks. arXiv 2015, arXiv:1512.01436. [Google Scholar]
- Wang, A.; Luo, Y.; Tu, G.; Liu, P. Vulnerability assessment scheme for power system transmission networks based on the fault chain theory. IEEE Trans. Power Syst. 2011, 26, 442–450. [Google Scholar] [CrossRef]
- Asavathiratham, C.; Roy, S.; Lesieutre, B.; Verghese, G. The influence model. IEEE Control Syst. 2001, 21, 52–64. [Google Scholar]
- Roy, S.; Asavathiratham, C.; Lesieutre, B.C.; Verghese, G.C. Network models: Growth, dynamics, and failure. In Proceedings of the 34th IEEE Hawaii International Conference on System Sciences (HICSS), Maui, HI, USA, 6 January 2001; pp. 728–737. [Google Scholar]
- (NERC) North American Electricity Reliability Council. Reliability Guideline: Methods for Establishing IROLs; Technical Report; NERC: Atlanta, GA, USA, 2018. [Google Scholar]
- Rahnamay-Naeini, M.; Hayat, M. Impacts of operating characteristics on sensitivity of power grids to cascading failures. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar]
- Ejebe, G.C.; Waight, J.G.; Sanots-Nieto, M.; Tinney, W.F. Fast calculation of linear available transfer capability. IEEE Trans. Power Syst. 2000, 15, 1112–1116. [Google Scholar] [CrossRef]
- Guo, J.; Fu, Y.; Li, Z.; Shahidehpour, M. Direct calculation of line outage distribution factors. IEEE Trans. Power Syst. 2009, 24, 1633–1634. [Google Scholar]
- Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Ellens, W.; Spieksma, F.; Van Mieghem, P.; Jamakovic, A.; Kooij, R. Effective graph resistance. Linear Algebra Its Appl. 2011, 435, 2491–2506. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Mohar, B. The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 1996, 36, 982–985. [Google Scholar] [CrossRef]
- Steinberg, R.; Zangwill, W.I. The prevalence of Braess’ paradox. Transp. Sci. 1983, 17, 301–318. [Google Scholar] [CrossRef]
- Anderson, R.M.; Anderson, B.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Centola, D. The spread of behavior in an online social network experiment. Science 2010, 329, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Daley, D.J.; Kendall, D.G. Epidemics and rumours. Nature 1964, 204, 1118. [Google Scholar] [CrossRef]
- Wang, Z.; Rahnamay-Naeini, M.; Abreu, J.M.; Shuvro, R.A.; Das, P.; Mammoli, A.A.; Ghani, N.; Hayat, M.M. Impacts of operators’ behavior on reliability of power grids during cascading failures. IEEE Trans. Power Syst. 2018, 33, 6013–6024. [Google Scholar] [CrossRef]
Category | Subcategory | Further Subcategory | Works |
---|---|---|---|
Data-driven Interaction Graphs | Outage Sequence | Consecutive Failures | [13,14,15,16,17,18,19,20] |
Generation-based Failures | [21,22,23,24,25,26] | ||
Influence-based | [27,28,29,30] | ||
Multiple and Simultaneous Failures | [31,32,33,34,35,36,37] | ||
Risk-graph | [38,39,40,41] | ||
Correlation-based | [29,30,42] |
Category | Key Properties | Limitations |
---|---|---|
Outage Sequence: Consecutive Failures |
|
|
Outage Sequence: Generation-based Failures |
|
|
Outage Sequence: Influence-based |
|
|
Outage Sequence: Multiple and Simultaneous Failures |
|
|
Risk-graph |
|
|
Correlation-based |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakarmi, U.; Rahnamay Naeini, M.; Hossain, M.J.; Hasnat, M.A. Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey. Energies 2020, 13, 2219. https://doi.org/10.3390/en13092219
Nakarmi U, Rahnamay Naeini M, Hossain MJ, Hasnat MA. Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey. Energies. 2020; 13(9):2219. https://doi.org/10.3390/en13092219
Chicago/Turabian StyleNakarmi, Upama, Mahshid Rahnamay Naeini, Md Jakir Hossain, and Md Abul Hasnat. 2020. "Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey" Energies 13, no. 9: 2219. https://doi.org/10.3390/en13092219
APA StyleNakarmi, U., Rahnamay Naeini, M., Hossain, M. J., & Hasnat, M. A. (2020). Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey. Energies, 13(9), 2219. https://doi.org/10.3390/en13092219