Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle
Abstract
:1. Introduction
2. Methodology
2.1. Description and Properties of the System
2.2. Working Fluids Properties
2.3. Thermodynamic Analysis
- -
- The components were assumed as open systems in a stable state condition.
- -
- The atmospheric temperature and pressure were set to 25 °C and 101.3 kPa, respectively.
- -
- The kinetic and potential energy was not considered in the energy balance.
- -
- The Brayton-CO2 compressor is studied under similar turbine conditions.
- -
- The consequences of pressure fluctuations are not known.
- -
- Pressure drops in the tubing are not known.
- -
- Pressure drops in structure heat exchangers are estimated depending on the geometry and flow regime characteristics.
2.4. LCA in the Brayton S-CO2-ORC System
3. Results and Discussion
3.1. System Thermodynamic and Exergy Performance
3.2. Exergy Destruction
3.3. Life Cycle Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
LCA | Life Cycle Assessment |
ORC | Organic Rankine Cycle |
Heat rate [kW] | |
Power [kW] | |
Mass flow rate [kW] | |
Enthalpy [kJ/kg·K] | |
Specific entropy [kJ/kg·K] | |
Exergy rate | |
Exergy destruction rate | |
Efficiency | |
Mass [kg] | |
Area [m] | |
Thickness [m] | |
Correction Factor | |
Environmental Impact [mPts] | |
Co | Construction |
Om | Operation |
De | decommissioning |
Wf | Working fluid |
PPE | Pinch Point of Evaporator |
Appendix A
Organic Fluid | Equipment | Material | w [mPts/kg] | Quality [kg] | Yco [mPts] | Yom [mPts] | Yde [mPts] | Y [mPts] |
---|---|---|---|---|---|---|---|---|
Cyclohexane | ITC1 | Copper | 1400 | 1579 | 2,321,003 | 0 | 110,524 | 2,431,527 |
ITC2 | Copper | 1400 | 333 | 490,057 | 0 | 23,336 | 513,393 | |
ITC3 | Copper | 1400 | 179 | 263,130 | 0 | 12,530 | 275,660 | |
RHR | Copper | 1400 | 3137 | 4,611,496 | 0 | 219,595 | 4,831,091 | |
HTR | Copper | 1400 | 279 | 409,760 | 0 | 19,512 | 429,272 | |
T1 | Copper | 1400 | 2398 | 3525712 | 0 | 167,891 | 3,693,603 | |
T2 | Copper | 1400 | 3399 | 4,996,099 | 0 | 237,909 | 5,234,008 | |
T3 | Copper | 1400 | 848 | 1,245,860 | 1 | 59,327 | 1,305,187 | |
C1 | Copper | 1400 | 2822 | 4,148,525 | 2 | 197,549 | 434,6076 | |
P1 | Copper | 1400 | 2 | 2894 | 3 | 138 | 3035 | |
P2 | Copper | 1400 | 9 | 12,842 | 4 | 612 | 13,457 | |
Thermal Oil | Therminol | 46,467 | 184 | 8,568,515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Cyclohexane | 2639 | 149 | 392,031.28 | 39,203.13 | 10,585 | 441,819 | |
Toluene | ITC1 | Copper | 1400 | 3137 | 4,611,495.84 | 0 | 219,595 | 4,831,091 |
ITC2 | Copper | 1400 | 300 | 441,035.62 | 1 | 21,002 | 462,038 | |
ITC3 | Copper | 1400 | 153 | 224,568.70 | 2 | 10,694 | 235,264 | |
RHR | Copper | 1400 | 3137 | 4,611,495.84 | 3 | 219,595 | 4,831,094 | |
HTR | Copper | 1400 | 279 | 409,759.56 | 4 | 19,512 | 429,276 | |
T1 | Copper | 1400 | 2398 | 3,525,711.97 | 5 | 167,891 | 3,693,608 | |
T2 | Copper | 1400 | 3399 | 4,996,098.50 | 6 | 237,909 | 5,234,014 | |
T3 | Copper | 1400 | 810 | 1,190,334.01 | 7 | 56,683 | 1,247,024 | |
C1 | Copper | 1400 | 2822 | 4,148,525.01 | 8 | 197,549 | 4,346,082 | |
P1 | Copper | 1400 | 2 | 2895.92 | 9 | 138 | 3043 | |
P2 | Copper | 1400 | 3 | 4398.53 | 10 | 209 | 4618 | |
Thermal Oil | Therminol | 46,467 | 184 | 8,568,515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Toluene | 2680 | 144 | 386,282.14 | 10,748.90 | 10,430 | 407,461 | |
Acetone | ITC1 | Copper | 1400 | 1579 | 2,321,002.70 | 0 | 110,524 | 2,431,527 |
ITC2 | Copper | 1400 | 312 | 458,241.95 | 1 | 21,821 | 480,064 | |
ITC3 | Copper | 1400 | 115 | 169,131.42 | 2 | 8054 | 177,187 | |
RHR | Copper | 1400 | 3137 | 4,611,495.84 | 3 | 219,595 | 4831094 | |
HTR | Copper | 1400 | 279 | 409,759.56 | 4 | 19,512 | 429,276 | |
T1 | Copper | 1400 | 2398 | 3,525,711.97 | 5 | 167,891 | 3,693,608 | |
T2 | Copper | 1400 | 3399 | 4,996,098.50 | 6 | 237,909 | 5,234,014 | |
T3 | Copper | 1400 | 921 | 1,353,793.03 | 7 | 64,466 | 1,418,266 | |
C1 | Copper | 1400 | 2822 | 4,148,525.01 | 8 | 197,549 | 4,346,082 | |
P1 | Copper | 1400 | 2 | 2889.66 | 9 | 138 | 3036 | |
P2 | Copper | 1400 | 18 | 26,239.27 | 10 | 1249 | 27,499 | |
Thermal Oil | Therminol | 46,467 | 184 | 8,568,515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Acetone | 5426 | 170 | 924,019.85 | 92,401.98 | 24,949 | 1,041,370 |
References
- Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. [Google Scholar] [CrossRef]
- Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412. [Google Scholar] [CrossRef]
- Angelino, G. Carbon Dioxide Condensation Cycles. J. Eneg. Power 1968, 287–295. [Google Scholar] [CrossRef]
- Dostal, V.; Driscoll, M.J.; Hejzlar, P.A. Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, UK, March 2004. [Google Scholar]
- Abrosimov, K.A.; Baccioli, A.; Bischi, A. Techno-economic analysis of combined inverted Brayton—Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. X 2019, 3, 100014. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, Y.; Zhu, Y.; Niu, F.; Lu, D. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems. Prog. Nucl. Energy 2018, 108, 111–121. [Google Scholar] [CrossRef]
- Padilla, R.V.; Soo Too, Y.C.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365. [Google Scholar] [CrossRef]
- Padilla, R.V.; Benito, R.G.; Stein, W. An Exergy Analysis of Recompression Supercritical CO2 Cycles with and without Reheating. Energy Procedia 2015, 69, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
- Glatzmaier, G.C.; Turchi, C.S. Supercritical CO2 as a Heat Transfer and Power Cycle Fluid for CSP Systems. In Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 673–676. [Google Scholar]
- Hinze, J.F.; Nellis, G.F.; Anderson, M.H. Cost comparison of printed circuit heat exchanger to low cost periodic flow regenerator for use as recuperator in a s-CO2 Brayton cycle. Appl. Energy 2017, 208, 1150–1161. [Google Scholar] [CrossRef]
- Sharan, P.; Neises, T.; Turchi, C. Thermal desalination via supercritical CO2 Brayton cycle: Optimal system design and techno-economic analysis without reduction in cycle efficiency. Appl. Ther. Eng. 2019, 152, 499–514. [Google Scholar] [CrossRef]
- Park, J.H.; Park, H.S.; Kwon, J.G.; Kim, T.H.; Kim, M.H. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy 2018, 160, 520–535. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Zhang, L.; Yao, M.; Kruizenga, A.; Anderson, M. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle. Int. J. Heat Mass Transf. 2016, 98, 204–218. [Google Scholar] [CrossRef]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO 2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Musgrove, G.; Sullivan, S.; Shiferaw, D.; Fourspring, P. Heat exchangers. In Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 217–244. [Google Scholar]
- Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle. Appl. Energy 2018, 216, 634–648. [Google Scholar] [CrossRef]
- Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles. Appl. Energy 2018, 231, 1019–1032. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Lu, X.; Ji, X.; Wang, C. Designing heat exchanger for enhancing heat transfer of slurries in biogas plants. Energy Procedia 2019, 158, 1288–1293. [Google Scholar] [CrossRef]
- Pidaparti, S.R.; Anderson, M.H.; Ranjan, D. Experimental Investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for Supercritical CO2 power cycles. Exp. Ther. Fluid Sci. 2019, 106, 119–129. [Google Scholar] [CrossRef]
- Colonna, P.; van Putten, H. Dynamic modeling of steam power cycles. Part I-Modeling paradigm and validation. Appl. Ther. Eng. 2007, 27, 467–480. [Google Scholar] [CrossRef]
- Van Putten, H.; Colonna, P. Dynamic modeling of steam power cycles: Part II—Simulation of a small simple Rankine cycle system. Appl. Ther. Eng. 2007, 27, 2566–2582. [Google Scholar] [CrossRef]
- Chien, N.B.; Jong-Taek, O.; Asano, H.; Tomiyama, Y. Investigation of experiment and simulation of a plate heat exchanger. Energy Procedia 2019, 158, 5635–5640. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [Google Scholar] [CrossRef]
- Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy 2014, 65, 533–543. [Google Scholar] [CrossRef]
- Turchi, C.S.; Ma, Z.; Neises, T.; Wagner, M. Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems. In Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, San Diego, CA, USA, 23–26 July 2012; pp. 375–383. [Google Scholar]
- Le Moullec, Y. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy 2013, 49, 32–46. [Google Scholar] [CrossRef]
- Olumayegun, O.; Wang, M.; Oko, E. Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture. Energy 2019, 166, 1074–1088. [Google Scholar] [CrossRef]
- Liang, Y.; Bian, X.; Qian, W.; Pan, M.; Ban, Z.; Yu, Z. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine. Energy Convers. Manag. 2019, 197, 111845. [Google Scholar] [CrossRef]
- Kao, S.; Gibbs, J.; Hejzlar, P. Dynamic Simulation and Control of a Supercritical CO2 Power Conversion System for Small Light Water Reactor Applications. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009. [Google Scholar]
- Uusitalo, A.; Ameli, A.; Turunen-Saaresti, T. Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 2019, 167, 60–79. [Google Scholar] [CrossRef]
- Danieli, P.; Rech, S.; Lazzaretto, A. Supercritical CO2 and air Brayton-Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation. Energy 2019, 168, 295–309. [Google Scholar] [CrossRef]
- Thakar, R.; Bhosle, S.; Lahane, S. Design of Heat Exchanger for Waste Heat Recovery from Exhaust Gas of Diesel Engine. Procedia Manuf. 2018, 20, 372–376. [Google Scholar] [CrossRef]
- Valencia, G.; Isaza-Roldan, C.; Forero, J. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. [Google Scholar]
- Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures. Energies 2019, 12, 4643. [Google Scholar] [CrossRef] [Green Version]
- Valencia, G.; Peñaloza, C.; Rojas, J. Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids. Appl. Sci. 2019, 9, 4017. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, W.; Han, Z.; Li, P.; Jia, Y. Analysis of the thermodynamic performance of the organic Rankine cycle (ORC) based on the characteristic parameters of the working fluid and criterion for working fluid selection. Energy Convers. Manag. 2020, 211, 112746. [Google Scholar] [CrossRef]
- Iso, T.; Standards, I. Environmental Management The ISO 14000 Family of International Standards ISO in Brief ISO and the Environment; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resource 2020, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Michos, C.N.; Lion, S.; Vlaskos, I.; Taccani, R. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 2017, 132, 347–360. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE Standard 62.1-2010. Ventilation for Acceptable Indoor Air Quality, 62nd ed.; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2010. [Google Scholar]
- Ke, H.; Xiao, Q.; Cao, Y.; Ma, T.; Lin, Y.; Zeng, M.; Wang, Q. Simulation of the printed circuit heat exchanger for S-CO2 by segmented methods. Energy Procedia 2017, 142, 4098–4103. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64. [Google Scholar] [CrossRef]
- Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. [Google Scholar] [CrossRef] [Green Version]
- Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. [Google Scholar] [CrossRef] [Green Version]
- Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 12, 4165. [Google Scholar] [CrossRef] [Green Version]
- Preißinger, M.; Brüggemann, D. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities. Energies 2017, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Tchanche, B.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979. [Google Scholar] [CrossRef]
Cycle | Equipment | Fuel | Product | Loss |
---|---|---|---|---|
ORC | ITC1 | − | - | |
P1 | − | - | ||
ITC2 | − | − | - | |
T3 | − | - | ||
ITC3 | - | - | ||
P2 | − | - | ||
Brayton S-CO2 | C1 | - | ||
T1 | - | |||
T2 | - | |||
RH | - | |||
HTR | - | |||
C1 | - |
Parameter | ITC 1 | ITC2 | ||||
---|---|---|---|---|---|---|
Cyclohexane | Toluene | Acetone | Cyclohexane | Toluene | Acetone | |
[kW] | 182.00 | 166.62 | 181.84 | 165.08 | 165.08 | 165.08 |
Ai [m2] | 88.70 | 88.70 | 88.70 | 18.73 | 16.86 | 17.51 |
εi [%] | 90.27 | 89.96 | 91.08 | 85.02 | 81.71 | 85.54 |
[kW] | 6.15 | 5.17 | 5.64 | 8.55 | 10.41 | 8.33 |
[%] | 13.15 | 11.09 | 12.32 | 18.28 | 22.32 | 18.20 |
Parameter | ITC3 | |||||
Cyclohexane | Toluene | Acetone | ||||
[kW] | 138.56 | 139.36 | 136.86 | |||
Ai [m2] | 10.06 | 8.58 | 6.46 | |||
εi [%] | 53.85 | 56.53 | 58.52 | |||
[kW] | 7.69 | 6.74 | 5.88 | |||
[%] | 16.44 | 14.44 | 12.86 | |||
Parameter | RHR | HTR | ||||
Cyclohexane | Toluene | Acetone | Cyclohexane | Toluene | Acetone | |
[kW] | 250.46 | 250.46 | 250.46 | 446.79 | 446.79 | 446.79 |
Ai [m2] | 176.24 | 176.24 | 176.24 | 15.66 | 15.66 | 15.66 |
εi [%] | 97.57 | 97.57 | 97.57 | 98.30 | 98.30 | 98.30 |
[kW] | 4.31 | 4.31 | 4.31 | 4.50 | 4.50 | 4.50 |
[%] | 9.21 | 9.25 | 9.42 | 9.61 | 9.65 | 9.83 |
Parameter | T1 | T2 | ||||
Cyclohexane | Toluene | Acetone | Cyclohexane | Toluene | Acetone | |
[kW] | 76.82 | 76.82 | 76.82 | 108.86 | 108.86 | 108.86 |
εi [%] | 97.71 | 97.71 | 97.71 | 97.64 | 97.64 | 97.64 |
[kW] | 1.80 | 1.80 | 1.80 | 2.63 | 2.63 | 2.63 |
[%] | 3.84 | 3.86 | 3.93 | 5.61 | 5.63 | 5.74 |
Parameter | T3 | C1 | ||||
Cyclohexane | Toluene | Acetone | Cyclohexane | Toluene | Acetone | |
[kW] | 27.15 | 25.94 | 29.50 | 90.39 | 90.39 | 90.39 |
εi [%] | 83.88 | 83.22 | 81.74 | 93.72 | 93.72 | 93.72 |
[kW] | 5.22 | 5.23 | 6.59 | 5.68 | 5.68 | 5.68 |
[%] | 11.14 | 11.21 | 14.40 | 12.14 | 12.18 | 12.41 |
Parameter | P1 | P2 | ||||
Cyclohexane | Toluene | Acetone | Cyclohexane | Toluene | Acetone | |
[kW] | 0.14 | 0.14 | 0.14 | 0.62 | 0.21 | 1.27 |
εi [%] | 11.06 | 10.98 | 11.25 | 77.62 | 77.60 | 77.66 |
[kW] | 0.13 | 0.13 | 0.12 | 0.14 | 0.05 | 0.28 |
[%] | 0.27 | 0.27 | 0.27 | 0.30 | 0.10 | 0.62 |
Brayton S-CO2-ORC | ||||||
Parameter | Cyclohexane | Toluene | Acetone | |||
[kW] | 121.67 | 120.87 | 123.38 | |||
[%] | 48.58 | 48.26 | 49.26 | |||
[%] | 27.70 | 26.86 | 29.49 | |||
[%] | 70.27 | 69.81 | 71.25 |
Fluid | LCA Phase | ||
---|---|---|---|
Construction | Operation | Decommissioning | |
Cyclohexane | 151.2078 | 15.1208 | 4.0826 |
Toluene | 144.4687 | 14.4469 | 3.9007 |
Acetone | 164.3074 | 16.4307 | 4.4363 |
Thermal Oil | 184.4000 | 18.44 | 4.9788 |
Organic Fluid | Equipment | Material | w [mPts/kg] | Quality [kg] | Yco [mPts] | Yom [mPts] | Yde [mPts] | Y [mPts] |
---|---|---|---|---|---|---|---|---|
Cyclohexane | ITC1 | Steel | 86 | 1407 | 127,037 | 0 | 6049 | 133,086 |
ITC2 | Steel | 86 | 297 | 26,823 | 0 | 1277 | 28,100 | |
ITC3 | Steel | 86 | 159 | 14,402 | 0 | 686 | 15,088 | |
RHR | Steel | 86 | 2795 | 252,404 | 0 | 12,019 | 264,423 | |
HTR | Steel | 86 | 248 | 22,428 | 0 | 1068 | 23,496 | |
T1 | Steel | 86 | 2398 | 216,579 | 0 | 10,313 | 226,893 | |
T2 | Steel | 86 | 3399 | 306,903 | 0 | 14,614 | 321,518 | |
T3 | Steel | 86 | 848 | 76,531 | 0 | 3644 | 80,176 | |
C1 | Steel | 86 | 2822 | 254,838 | 0 | 12,135 | 266,973 | |
P1 | Steel | 86 | 2 | 178 | 0 | 8 | 186 | |
P2 | Steel | 86 | 9 | 789 | 0 | 38 | 826 | |
Thermal Oil | Therminol | 46,467 | 184 | 856,8515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Cyclohexane | 2639 | 151 | 399,022 | 39,902 | 10,774 | 449,698 | |
Toluene | ITC1 | Steel | 86 | 1407 | 127,037 | 0 | 6049 | 133,086 |
ITC2 | Steel | 86 | 267 | 24,139 | 1 | 1149 | 25,290 | |
ITC3 | Steel | 86 | 136 | 12,291 | 2 | 585 | 12,879 | |
RHR | Steel | 86 | 2795 | 252,404 | 3 | 12,019 | 264,426 | |
HTR | Steel | 86 | 248 | 22,428 | 4 | 1068 | 23,500 | |
T1 | Steel | 86 | 2398 | 216,579 | 5 | 10,313 | 226,898 | |
T2 | Steel | 86 | 3399 | 306,903 | 6 | 14,614 | 321,524 | |
T3 | Steel | 86 | 810 | 73,121 | 7 | 3482 | 76,609 | |
C1 | Steel | 86 | 2822 | 254,838 | 8 | 12,135 | 266,981 | |
P1 | Steel | 86 | 2 | 178 | 9 | 8 | 195 | |
P2 | Steel | 86 | 3 | 270 | 10 | 13 | 293 | |
Thermal Oil | Therminol | 46,467 | 184 | 8,568,515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Toluene | 2680 | 144 | 387,147 | 10,941 | 10,453 | 408,541 | |
Acetone | ITC1 | Steel | 86 | 1407 | 127,037 | 0 | 6049 | 133,086 |
ITC2 | Steel | 86 | 278 | 25,081 | 1 | 1194 | 26,277 | |
ITC3 | Steel | 86 | 103 | 9257 | 2 | 441 | 9700 | |
RHR | Steel | 86 | 2795 | 252,404 | 3 | 12,019 | 264,426 | |
HTR | Steel | 86 | 248 | 22,428 | 4 | 1068 | 23,500 | |
T1 | Steel | 86 | 2398 | 216,579 | 5 | 10,313 | 226,898 | |
T2 | Steel | 86 | 3399 | 306,903 | 6 | 14,614 | 321,524 | |
T3 | Steel | 86 | 921 | 83,162 | 7 | 3960 | 87,129 | |
C1 | Steel | 86 | 2822 | 254,838 | 8 | 12,135 | 266,981 | |
P1 | Steel | 86 | 2 | 178 | 9 | 8 | 195 | |
P2 | Steel | 86 | 18 | 1612 | 10 | 77 | 1699 | |
Thermal Oil | Therminol | 46,467 | 184 | 8,568,515 | 856,851 | 231,350 | 9,656,716 | |
Fluid | Acetone | 5426 | 164 | 891,450 | 89,145 | 24,069 | 1,004,664 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinel Blanco, E.; Valencia Ochoa, G.; Duarte Forero, J. Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies 2020, 13, 2259. https://doi.org/10.3390/en13092259
Espinel Blanco E, Valencia Ochoa G, Duarte Forero J. Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies. 2020; 13(9):2259. https://doi.org/10.3390/en13092259
Chicago/Turabian StyleEspinel Blanco, Edwin, Guillermo Valencia Ochoa, and Jorge Duarte Forero. 2020. "Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle" Energies 13, no. 9: 2259. https://doi.org/10.3390/en13092259
APA StyleEspinel Blanco, E., Valencia Ochoa, G., & Duarte Forero, J. (2020). Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies, 13(9), 2259. https://doi.org/10.3390/en13092259