Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters
Abstract
:1. Introduction
2. Bioinspired Prescribed Motion of Body Caudal Fin Carangiform AUV
3. Piezoelectric Energy Harvester Methods
3.1. Electromechanical Coupled Piezoelectric AUV Energy Harvester Modeling
3.2. Uncoupled Energy Harvesting Modeling
4. Effect of Patch Placement on Linear Characteristics of the System
5. Importance of Prescribed Motion on Structural Motion and Limits to the Applicability of the Uncoupled Modeling: Role of Forced Actuation and Damping
5.1. Convergence Analysis Investigation for Undulatory–Oscillatory Prescribed Motion
5.2. Case Motion Impacts the Interaction between Prescribed and Relative Motions
5.3. Impacts of Load Resistance and Damping on the System’s Performance
5.4. Prescribed Frequency Impacts on Harvester Performance
5.5. Prescribed Frequency and Damping with Optimal Resistance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Currier, T.; Lheron, S.; Modarres-Sadeghi, Y. A bioinspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20 g. Bioinspiration Biomim. 2020, 15, 055006. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tan, M. Motion Control of Biomimetic Swimming Robots; Huazhong University of Science and Technology Press: Wuhan, China, 2020. [Google Scholar]
- Fish, F.E. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 2020, 15, 025001. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Campos, A.; Fuentes, V.; Abdelkefi, A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 2019, 172, 257–285. [Google Scholar] [CrossRef]
- Wolf, Z.; Jusufi, A.; Vogt, D.; Lauder, G.V. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Bioinspir. Biomim. 2020, 15, 046008. [Google Scholar] [CrossRef] [PubMed]
- Ozmen Koca, G.; Bal, C.; Korkmaz, D.; Bingol, M.; Ay, M.; Akpolat, Z.; Yetkin, S. Three-dimensional modeling of a robitc fish based on real carp locomotion. Appl. Sci. 2018, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Ay, M.; Korkmaz, D.; Ozmen Koca, G.; Bal, C.; Akpolat, Z.; Bingol, M. Mechatronic design and manufacturing of the intelligent robotic fish for bio-inspired swimming modes. Electronics 2018, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Liu, J.; Wu, Z.; Fang, H. Depth control of a bioinspired robotic dolphin based on sliding-mode fuzzy control method. IEEE Trans. Ind. Electron. 2017, 65, 2429–2438. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Salazar, R.; Fuentes, V.; Abdelkefi, A. Classification of biological and bioinspired aquatic systems: A review. Ocean Eng. 2017, 148, 75–114. [Google Scholar] [CrossRef]
- Ji, D.; Rehman, F.U.; Ajwad, S.A.; Shahani, K.; Sharma, S.; Sutton, R.; Li, S.; Ye, Z.; Zhu, H.; Zhu, S. Design and development of autonomous robotic fish for object detetion and tracking. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420925284. [Google Scholar] [CrossRef]
- Romano, D.; Donati, E.; Beneli, G.; Stefanini, C. A review on animal-robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019, 113, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.; Chae, W.; Kim, H.; Walcott, H.; Peterson, S.D.; Porfiri, M. Energy harvesting from a piezoelectric biomimetic fish tail. Renew. Energy 2015, 86, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Salazar, R.; Taylor, G.; Khalid, M.S.U.; Abdelkefi, A. Optimal design and energy harvesting performance of carangiform fish-like robotic system. Smart Mater. Struct. 2018, 27, 075045. [Google Scholar] [CrossRef]
- Salazar, R.; Abdelkefi, A. Nonlinear analysis of a piezolectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles. Appl. Energy 2020, 263, 114627. [Google Scholar] [CrossRef]
- Khalid, M.S.U.; Akhtar, I.; Dong, H. Hydrodynamics of tandem fish school with asynchronous undulation of individuals. J. Fluids Struct. 2016, 66, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Salazar, R.; Serrano, A.A. Fatigue in piezoelectric ceramic vibrational energy harvesting: A review. Appl. Energy 2020, 270, 115161. [Google Scholar] [CrossRef]
- Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1–R21. [Google Scholar] [CrossRef]
- Safaei, M.; Sodano, H.A.; Anton, S.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mater. Struct. 2019, 28, 113001. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Alivoy, Y.I.; Cho, S.J.; Morkoc, H.; Lee, H.; Kang, Y.S. Processing, structure, properties, and applications of PZT thin films. Crit. Rev. Solid State Mater. Sci. 2007, 32, 111–202. [Google Scholar] [CrossRef]
- Horchidan, N.; Ciomaga, C.E.; Frunza, R.C.; Capiani, C.; Galassi, C.; Mitoseriu, L. A comparative study of hard/soft PZT-based ceramic composites. Ceram. Int. 2016, 42, 9125–9132. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Barsallo, N. Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. Intell. Mater. Syst. Struct. 2014, 25, 1–15. [Google Scholar] [CrossRef]
- Von Wagner, U.; Hagedorn, P. Piezo-beam systems subjected to weak electric field: Experiments and modelling of non-linearities. J. Sound Vib. 2002, 256, 861–872. [Google Scholar] [CrossRef]
- Masana, R.; Daqaq, M.F. Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 2011, 133, 011007. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Nayfeh, A.H.; Hajj, M.R. Global nonlinear distributed parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 2012, 67, 1147–1160. [Google Scholar] [CrossRef]
- Stanton, S.C.; Erturk, A.; Mann, B.P.; Inman, D.J. Nonlinear piezoelecticity in electroelastic energy harvesters: Modeling and experimental identification. J. Appl. Phys. 2010, 108, 074903. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.A.; Auld, B.A. Modeling 1-3 composite piezoelectrics: Thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 40–47. [Google Scholar] [CrossRef]
- Ledenham, S.; Erturk, A. Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 2015, 79, 1727–1743. [Google Scholar] [CrossRef]
- Amin, A.; Haun, M.J.; Badger, B.; McKinstry, H.; Cross, L.E. A phomenological Gibbs function for the single cell region of the PbZrO3: PbTiO3 solid solution system. Ferroelectrics 1985, 65, 107–130. [Google Scholar] [CrossRef]
- Sherrit, S.; Mukherjee, B.K. Characterization of piezoelectric materials for transducers. arXiv 2007, arXiv:0711.2657. [Google Scholar]
- Wang, D.; Fotinich, Y.; Carman, G.P. Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 1998, 83, 5342–5350. [Google Scholar] [CrossRef]
- Guyomar, D.; Aurelle, N.; Eyraud, L. Piezoelectric ceramics behavior. Application to Langevin transducer. J. Phys. III 1997, 7, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Guyomar, D.; Aurelle, N.; Richard, C.; Gonnard, P.; Eyraud, L. Nonlinearities in Langevin transducers. In Proceedings of the IEEE Ultrasonics Symposium, Cannes, France, 31 October–3 November 1994; Volume 2, pp. 925–928. [Google Scholar]
- Joshi, S.P. Non-linear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1992, 1, 80. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.; Scarpa, F.; Leng, J.; Liu, Y. A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 2018, 201, 121–130. [Google Scholar] [CrossRef]
- Yang, J. Analysis of Piezoelectric Devices; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2006. [Google Scholar]
- Stanton, S.C.; Erturk, A.; Mann, B.P.; Dowell, E.H.; Inman, D.J. Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 2012, 23, 183–199. [Google Scholar] [CrossRef]
- Nelson, D.F. Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals. J. Acoust. Soc. Am. 1978, 63, 1738–1748. [Google Scholar] [CrossRef]
- Pulino-Sagradi, D.; Sagradi, M.; Karimi, A.; Martin, J.L. Damping capacity of Fe-Cr-X high-damping alloys and its dependence on magnetic domain structure. Scr. Mater. 1998, 39, 2. [Google Scholar] [CrossRef]
- Haghpanah, B.; Shirazi, A.; Salai-Sharif, L.; Izard, A.G.; Valdevit, L. Eleastic architected materials with extreme damping capacity. Extrem. Mech. Lett. 2017, 17, 56–61. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
Width of piezoelectric layer (mm) | 7 | |
Width of substrate layer (mm) | 7 | |
Thickness of piezoelectric layer (mm) | 0.2 | |
Thickness of aluminum substrate (mm) | 0.6 | |
Piezoelectric material Young’s modulus (GN/m2) | 30.336 | |
Aluminum Young’s modulus (GN/m2) | 69.5 | |
Density of aluminum substrate (kg/cm3) | 2700 | |
Density of piezoelectric patch (kg/cm3) | 5440 | |
) | ||
) | ||
Position to the neutral axis | ||
Position of aluminum relative to the neutral axis | ||
Position of piezoelectric layer relative to the neutral axis | ||
Start of aluminum layer relative to neutral axis | ||
) | ||
) | 12.563 |
L (m) | First Natural Frequency (Hz) | Second Natural Frequency (Hz) | Third Natural Frequency (Hz) |
---|---|---|---|
0.1 | Head Attachment | ||
59.4099 | 338.3119 | 898.0767 | |
0.1 | Tail Attachment | ||
42.1036 | 303.1340 | 874.8842 |
Case | Equation | Description |
---|---|---|
A | Undulating–oscillatory motion with original backbone polynomial. | |
B | Undulating–oscillatory motion with linear backbone constraint as . | |
C | Undulating–oscillatory motion with constant backbone constraint as . | |
D | Oscillatory motion with original backbone polynomial. | |
E | Oscillatory motion with linear backbone envelope. | |
F | Oscillatory motion with constant backbone constraint. |
Head | Tail | |||
---|---|---|---|---|
Case A | ||||
N = 6 | 2.1668 | 0.99% | 2.2029 | 0.93% |
N = 7 | 2.1453 | 2.1824 | ||
Case D | ||||
N = 6 | 1.6198 | 0.12% | 1.6207 | 0.093% |
N = 7 | 1.6217 | 1.6222 | ||
Head | Tail | |||
(W) | (W) | |||
Case A | ||||
N = 6 | 2.62% | 11.45% | ||
N = 7 | ||||
Case D | ||||
N = 6 | 3.68% | 1.49% | ||
N = 7 |
; where ; where | ||||||
Head | ||||||
Case A | Case B | Case C | Case D | Case E | Case F | |
; where ; where | ||||||
Case A | Case B | Case C | Case D | Case E | Case F | |
Head | Head | Head | Tail | Tail | Tail | |
---|---|---|---|---|---|---|
Case A | ||||||
4.977 | 4.969 | 0.2392 | 0.2404 | 0.1825 | ||
5.589 | 5.574 | 1.862 | 1.868 | 1.523 | ||
5.494 | 5.479 | 7.071 | 7.086 | 7.121 | ||
2.648 | 2.629 | 14.727 | 14.740 | 14.884 | ||
4.661 | 4.639 | 19.109 | 19.118 | 19.349 | ||
4.244 | 4.227 | 21.213 | 21.222 | 21.412 | ||
3.769 | 3.754 | 21.705 | 21.725 | 21.909 | ||
Case D | ||||||
3.401 | 3.396 | 0.164 | 0.163 | 0.157 | ||
2.809 | 2.811 | 0.587 | 0.586 | 0.555 | ||
2.823 | 2.821 | 1.175 | 1.171 | 1.110 | ||
3.037 | 3.042 | 1.788 | 1.785 | 1.695 | ||
2.959 | 2.962 | 2.248 | 2.241 | 2.130 | ||
2.992 | 2.996 | 2.432 | 2.438 | 2.329 | ||
3.031 | 3.035 | 2.479 | 2.477 | 2.369 |
Head | Tail | |||||
---|---|---|---|---|---|---|
Case A | ||||||
Frequency (Hz) | Prescribed () | Relative () | Total motion () | Prescribed () | Relative () | Total motion () |
1 | 1 | 2.1174 | 1.4586 | 1 | 2.1230 | 1.4580 |
2 | 1 | 2.1232 | 1.4558 | 1 | 2.1365 | 1.4571 |
3 | 1 | 2.1298 | 1.4355 | 1 | 2.1507 | 1.4574 |
4 | 1 | 2.1371 | 1.4510 | 1 | 2.1662 | 1.4603 |
5 | 1 | 2.1453 | 1.4488 | 1 | 2.1824 | 1.4623 |
6 | 1 | 2.1534 | 1.4524 | 1 | 2.2017 | 1.4683 |
7 | 1 | 2.1634 | 1.4528 | 1 | 2.2212 | 1.4749 |
8 | 1 | 2.1704 | 1.4457 | 1 | 2.2347 | 1.4828 |
9 | 1 | 2.1827 | 1.4568 | 1 | 2.2639 | 1.4934 |
Case D | ||||||
Prescribed () | Relative () | Total motion () | Prescribed () | Relative () | Total motion () | |
1 | 1 | 1.62093 | 6.21132 | 1 | 1.62121 | 6.21545 |
2 | 1 | 1.62096 | 6.21779 | 1 | 1.62121 | 6.22787 |
3 | 1 | 1.62175 | 6.22957 | 1 | 1.62256 | 6.24913 |
4 | 1 | 1.62145 | 6.24256 | 1 | 1.62174 | 6.28299 |
5 | 1 | 1.62169 | 6.26169 | 1 | 1.62220 | 6.31971 |
6 | 1 | 1.62418 | 6.28476 | 1 | 1.62745 | 6.36952 |
7 | 1 | 1.62488 | 6.30981 | 1 | 1.62995 | 6.42618 |
8 | 1 | 1.62523 | 6.33117 | 1 | 1.63273 | 6.47224 |
9 | 1 | 1.62769 | 6.38672 | 1 | 1.63534 | 6.56591 |
Head | Tail | |||||
---|---|---|---|---|---|---|
Case A | ||||||
Frequency (Hz) | Total | Total | ||||
1 | 0.8288 | 0.7578 | 0.0726 | 5.3298 | 2.9888 | 7.7665 |
2 | 1.6575 | 1.5163 | 0.1508 | 10.6585 | 6.0014 | 15.4966 |
3 | 2.4865 | 2.2633 | 0.2252 | 15.9895 | 9.0109 | 23.2152 |
4 | 3.3151 | 3.0114 | 0.3174 | 21.3006 | 12.0326 | 30.9158 |
5 | 4.1441 | 3.7537 | 0.4406 | 26.6258 | 15.0815 | 38.5161 |
6 | 4.9727 | 4.4988 | 0.6031 | 31.9756 | 18.1303 | 46.2722 |
7 | 5.8018 | 5.2470 | 0.7164 | 37.3089 | 21.2052 | 53.9468 |
8 | 6.6302 | 5.9799 | 0.8135 | 42.6012 | 24.3132 | 61.5902 |
9 | 7.4595 | 6.7297 | 1.0927 | 47.9686 | 27.4530 | 69.1966 |
Case D | ||||||
Total | Total | |||||
1 | 0.6126 | 0.6049 | 0.0153 | 0.6126 | 1.4386 | 0.8263 |
2 | 1.2252 | 1.2106 | 0.0417 | 1.2252 | 2.8771 | 1.6524 |
3 | 1.8378 | 1.8199 | 0.0764 | 1.8378 | 4.3324 | 2.4954 |
4 | 2.4456 | 2.4317 | 0.1306 | 2.4456 | 5.7776 | 3.3320 |
5 | 3.0631 | 3.0347 | 0.1959 | 3.0630 | 7.1980 | 4.1493 |
6 | 3.6757 | 3.6473 | 0.2639 | 3.6756 | 8.6734 | 5.0050 |
7 | 4.2882 | 4.2407 | 0.3434 | 4.2882 | 10.1217 | 5.8525 |
8 | 4.8912 | 4.8481 | 0.4551 | 4.8912 | 11.5482 | 6.7341 |
9 | 5.5134 | 5.4692 | 0.5765 | 5.5134 | 13.0296 | 7.5890 |
Damping Value | Case A Head | Case A Tail | ||
---|---|---|---|---|
Damping Value | Case D Head | Case D Tail | ||
---|---|---|---|---|
Head | Tail | |||||
---|---|---|---|---|---|---|
Case A | ||||||
Prescribed () | Relative () | Total motion () | Prescribed () | Relative () | Total motion () | |
0.1 | 1 | 2.1207 | 1.4587 | 1 | 2.1525 | 1.4736 |
0.3 | 1 | 2.1453 | 1.4488 | 1 | 2.1824 | 1.4623 |
0.5 | 1 | 2.1654 | 1.4437 | 1 | 2.2203 | 1.4488 |
Case D | ||||||
Prescribed () | Relative () | Total motion () | Prescribed () | Relative () | Total motion () | |
0.1 | 1 | 1.6251 | 6.2513 | 1 | 1.6295 | 6.2953 |
0.3 | 1 | 1.6217 | 6.2617 | 1 | 1.6222 | 6.3197 |
0.5 | 1 | 1.6150 | 6.2735 | 1 | 1.6165 | 6.3477 |
Case A Head | Case A Tail | |||
---|---|---|---|---|
Power (W) | Power (W) | |||
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | |
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | |
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: |
Case D Head | Case D Tail | |||
---|---|---|---|---|
Power (W) | Power (W) | |||
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | |
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | |
(Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: | (Max) Amp: Res: (Min) Amp: Res: | (Max) Amp: Res: (Uncoupled Max) Amp: Res: |
Case A Head | Case A Tail | |
---|---|---|
(Max) (Min) | (Max) (Min) | |
(Max) (Min) (Uncoupled Max) (Uncoupled Min) | (Max) (Min) (Uncoupled Max) (Uncoupled Min) | |
Case D Head | Case D Tail | |
(Max) (Min) | (Max) (Min) | |
(Max) (Min) (Uncoupled Max) (Uncoupled Min) | (Max) (Min) (Uncoupled Max) (Uncoupled Min) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, R.; Quintana, R.; Abdelkefi, A. Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters. Energies 2021, 14, 693. https://doi.org/10.3390/en14030693
Salazar R, Quintana R, Abdelkefi A. Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters. Energies. 2021; 14(3):693. https://doi.org/10.3390/en14030693
Chicago/Turabian StyleSalazar, Ryan, Ryan Quintana, and Abdessattar Abdelkefi. 2021. "Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters" Energies 14, no. 3: 693. https://doi.org/10.3390/en14030693
APA StyleSalazar, R., Quintana, R., & Abdelkefi, A. (2021). Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters. Energies, 14(3), 693. https://doi.org/10.3390/en14030693