Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables
Abstract
:1. Introduction
- The assessment of HVDC converter performances through a conventional OPF formulation is unique and presented for the first time in the literature.
- Identifying the possibilities of power imbalances in the DC link in the case of random selection of DC-side CVs, such as power at converter stations, DC link current, etc., in the OPF formulation and summarizing its impact on converter performance is novel. Based on the above, an OPF with only two CVs on the DC side is proposed for a hybrid AC-DC system.
- Analyzing the effectiveness of the devised model in converter performances side by side with power system indices can be considered the first of its kind in the literature.
- The assessment of the applicability of the proposed model to the allocation of PV-type DG in hybrid AC-DC systems is a unique contribution to the best of the authors’ knowledge.
2. Modeling of HVDC
3. Background of the Research and Mathematical Formulation
3.1. Control Variables
3.2. State Variable
3.3. Objective Function
3.4. Constraints
3.4.1. Equality Constraints
3.4.2. Inequality Constraints
4. Archimedes Optimization Algorithm
5. Simulation Results and Discussion
5.1. Result Analysis without Considering DG
5.2. Result Analysis Considering DG
6. Conclusions
- With the proposed OPF model, the active power loss (without considering DG) was found to be 4% (8%) better than that reported in the existing literature with BSA (ABC).
- The DC link converter station could operate with 10% improved power factor conditions, as compared to the reported OPF with five CVs. The main reason for this is the ability of the converter stations to operate at lower firing angles. Typically, this is smaller in comparison to the reported results.
- Furthermore, the lower value of the firing angle led to a noteworthy reduction of about 10–30% in VUF. Similarly, in all cases, the obtained value of RF was near about half compared to the methods reported in the literature. Likewise, improvements in other performance parameters, like FF, TUF, and TDD, were also observed with the selected CV.
- The proposed OPF model was also suitable for optimal DG allocation in hybrid power systems. Along with highest DG integration and improved converter performance, a notable reduction of 8% (10%) in active power loss was found compared to the reported results by BSA (ABC).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OPF | Optimal power flow |
CV | Control variable |
HVDC | High-voltage direct current |
AOA | Archimedes optimization algorithm |
PV | Photovoltaic |
DG | Distributed generation |
RES | Renewable energy source |
LCC | Line-commutated converter |
VSC | Voltage-source converter |
ORPD | Optimal reactive power dispatch |
DE | Differential evolution |
GA | Genetic algorithm |
ABC | Artificial bee colony |
BSA | Backtracking search algorithm |
VUF | Valve utilization factor |
TUF | Transformer utilization factor |
TDD | Total demand distortion |
FF | Form factor |
RF | Ripple factor |
Voltage magnitude at bus r | |
Angle of voltage at bus r | |
Direct current | |
, | Direct voltage at rectifier and inverter end, respectively |
, | No-load maximum DC voltage at rectifier and inverter end, respectively |
DC link resistance | |
, | Tap ratio at rectifier and inverter, respectively |
Ignition delay angle | |
Extinction advance angle | |
, | Rectifier active and reactive power |
, | Inverter active and reactive power |
, | Rectifier and inverter end power factor |
DC link control variable | |
AC-side control variable | |
DC link state variable | |
AC-side state variable | |
, | Active and reactive power of generator |
NG | Number of generators |
Tap ratio of transformer | |
NT | Number of transformers |
Reactive power injection by synchronous condenser | |
NC | Number of synchronous condensers |
NP | Number of load buses |
Active power loss | |
NL | Number of lines |
Resistance of line | |
Current through line | |
Ybus | Bus admittance matrix |
Appendix A
Appendix B
References
- Baseer, M.A.; Alsaduni, I. A Novel Renewable Smart Grid Model to Sustain Solar Power Generation. Energies 2023, 16, 4784. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Zhou, Y.; Zhang, X.; Wang, Y.; Xu, H. Photovoltaic Power Plant Collection and Connection to HVDC Grid with High Voltage DC/DC Converter. Electronics 2021, 10, 3098. [Google Scholar] [CrossRef]
- ABB. Special Report—60 Years of HVDC. ABB Group. Available online: https://library.e.abb.com/public/aff841e25d8986b5c1257\d380045703f/140818$%$20ABB$%$20SR$%$2060$%$20years$%$20of$%2$0HVDC_72dpi.pdf (accessed on 1 June 2023).
- “Progress of Substations in the Country”, Central Electricity Authority, Ministry of Power, Government of India. Available online: https://cea.nic.in/wp-content/uploads/transmission/2022/11/GS_SS_1.pdf (accessed on 1 June 2023).
- All India Installed Capacity (in MW) of Power Stations. Central Electricity Authority, Ministry of Power, Government of India. Available online: https://cea.nic.in/wp-content/uploads/installed/2022/11/IC_Nov_2022.pdf (accessed on 1 June 2023).
- Oliveira, D.; Leal, G.C.B.; Herrera, D.; Galván-Díez, E.; Carrasco, J.M.; Aredes, M. An Analysis on the VSC-HVDC Contribution for the Static Voltage Stability Margin and Effective Short Circuit Ratio Enhancement in Hybrid Multi-Infeed HVDC Systems. Energies 2023, 16, 532. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, L.; Chen, S. A Simplified Model of the HVDC Transmission System for Sub-Synchronous Oscillations. Sustainability 2023, 15, 7444. [Google Scholar] [CrossRef]
- Pragati, A.; Mishra, M.; Rout, P.K.; Gadanayak, D.A.; Hasan, S.; Prusty, B.R. A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective. Energies 2023, 16, 4413. [Google Scholar] [CrossRef]
- Wu, Y.K.; Gau, D.Y.; Tung, T.D. Overview of Various Voltage Control Technologies for Wind Turbines and AC/DC Connection Systems. Energies 2023, 16, 4128. [Google Scholar] [CrossRef]
- Marzinotto, M.; Molfino, P.; Nervi, M. On the Measurement of Fields produced by Sea Return Electrodes for HVDC Transmission. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Rome, Italy, 23–25 September 2020. [Google Scholar]
- Zhou, B.; Ai, X.; Fang, J.; Yao, W.; Zuo, W.; Chen, Z.; Wen, J. Data-adaptive robust unit commitment in the hybrid AC/DC power system. Appl. Energy 2019, 254, 113784. [Google Scholar] [CrossRef]
- Lekić, A.; Ergun, H.; Beerten, J. Initialisation of a hybrid AC/DC power system for harmonic stability analysis using a power flow formulation. High Volt. 2020, 5, 534–542. [Google Scholar] [CrossRef]
- Li, G.; Liang, J.; Joseph, T.; An, T.; Lu, J.; Szechtman, M.; Zhuang, Q. Feasibility and reliability analysis of LCC DC grids and LCC/VSC hybrid DC grids. IEEE Access 2019, 7, 22445–22456. [Google Scholar] [CrossRef]
- Battaglia, A.; Buono, L.; Marzinotto, M.; Palone, F.; Patti, S. LCC and beyond: The new SaCoI link. In Proceedings of the 2021 AEIT HVDC International Conference (AEIT HVDC), Genoa, Italy, 27–28 May 2021. [Google Scholar]
- Kundur, P.B. Power System Stability and Control, 1st ed.; McGraw Hill Education: Noida, India, 2006. [Google Scholar]
- de Martinis, U.; Gagliardi, F.; Losi, A.; Mangoni, V.; Rossi, F. Optimal load flow for electrical power systems with multiterminal HVDC links. IEE Proc. (Gener. Transm. Distrib.) 1990, 137, 139–145. [Google Scholar] [CrossRef]
- Li, Q.; Liu, M.; Liu, H. Piecewise normalized normal constraint method applied to minimization of voltage deviation and active power loss in an AC–DC hybrid power system. IEEE Trans. Power Syst. 2014, 30, 1243–1251. [Google Scholar] [CrossRef]
- Arifoglu, U.; Tarkan, N. New sequential AC-DC load-flow approach utilizing optimization techniques. Eur. Trans. Electr. Power 1999, 9, 93–100. [Google Scholar] [CrossRef]
- Sreejaya, P.; Iyer, S.R. Optimal reactive power flow control for voltage profile improvement in AC-DC power systems. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010. [Google Scholar]
- Taghavi, R.; Seifi, A. Optimal reactive power control in hybrid power systems. Electr. Power Components Syst. 2012, 40, 741–758. [Google Scholar] [CrossRef]
- Thukaram, D.; Yesuratnam, G. Optimal reactive power dispatch in a large power system with AC–DC and FACTS controllers. IET Gener. Transm. Distrib. 2008, 2, 71–81. [Google Scholar] [CrossRef]
- Yu, J.; Yan, W.; Li, W.; Wen, L. Quadratic models of AC–DC power flow and optimal reactive power flow with HVDC and UPFC controls. Electr. Power Syst. Res. 2008, 78, 302–310. [Google Scholar] [CrossRef]
- Sayah, S. Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Appl. Soft Comput. 2018, 73, 591–606. [Google Scholar] [CrossRef]
- Kılıç, U.; Ayan, K. Optimizing power flow of AC–DC power systems using artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 2013, 53, 592–602. [Google Scholar] [CrossRef]
- Kılıç, U.; Ayan, K.; Arifoğlu, U. Optimizing reactive power flow of HVDC systems using genetic algorithm. Int. J. Electr. Power Energy Syst. 2014, 55, 1–12. [Google Scholar] [CrossRef]
- Ayan, K.; Kılıç, U. Optimal power flow of two-terminal HVDC systems using backtracking search algorithm. Int. J. Electr. Power Energy Syst. 2016, 78, 326–335. [Google Scholar] [CrossRef]
- Duman, S. A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems. IEEE Access 2018, 6, 45394–45416. [Google Scholar] [CrossRef]
- Fadel, W.; Kilic, U.; Ayan, K. Optimal reactive power flow of power systems with two-terminal HVDC and multi distributed generations using backtracking search algorithm. Int. J. Electr. Power Energy Syst. 2021, 127, 106667. [Google Scholar] [CrossRef]
- KILIÇ, U.; Ayan, K. Artificial bee colony algorithm based optimal reactive power flow of two-terminal HVDC systems. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1075–1090. [Google Scholar] [CrossRef]
- Sayah, S.; Hamouda, A. Optimal power flow solution of integrated AC-DC power system using enhanced differential evolution algorithm. Int. Trans. Electr. Energy Syst. 2019, 29, e2737. [Google Scholar] [CrossRef]
- Sahay, S.; Upputuri, R.; Kumar, N. Optimal power flow-based approach for grid dispatch problems through Rao algorithms. J. Eng. Res. 2023, 11, 100032. [Google Scholar] [CrossRef]
- Akdag, O. A improved Archimedes optimization algorithm for multi/single-objective optimal power flow. Electr. Power Syst. Res. 2022, 206, 107796. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Walid Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- The IEEE 30-Bus Test System. Available online: https://labs.ece.uw.edu/pstca/pf30/ieee30cdf.txt (accessed on 10 March 2023).
- Rashid, M.H. Power Electronics: Devices, Circuits, and Applications, 4th ed.; Pearson Education: Chennai, India, 2017. [Google Scholar]
- Abdalla, O.H.; Elmasry, S.; El Korfolly, M.I.; Htita, I. Harmonic Analysis of an Arc Furnace Load Based on the IEEE 519-2014 Standard. In Proceedings of the 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 13–15 December 2022. [Google Scholar]
Test System | HVDC Link | Without DG | With DG | |
---|---|---|---|---|
Rectifier Bus | Inverter Bus | |||
IEEE 30 bus system | 2 | 14 | Case 1 | Case 3 |
2 | 16 | Case 2 | Case 4 |
Case 1 | Case 2 | |||||
---|---|---|---|---|---|---|
Variable | BSA [28] | ABC [29] | AOA | BSA [28] | ABC [29] | AOA |
1.4000 | 1.3211 | 1.4000 | 1.40 | 1.39982 | 1.4000 | |
1.0821 | 1.086 | 1.0821 | 1.0788 | 1.1000 | 1.0841 | |
1.0626 | 1.072 | 1.0671 | 1.0624 | 1.0614 | 1.0734 | |
0.4000 | 0.3600 | 0.3265 | 0.38 | 0.40 | 0.2935 | |
0.4000 | 0.4000 | 0.3956 | 0.40 | 0.40 | 0.4000 | |
0.2400 | 0.2400 | 0.2400 | 0.24 | 0.18 | 0.2400 | |
0.2400 | 0.0900 | 0.2399 | 0.24 | 0.17 | 0.1236 | |
t(6–9) | 0.96 | 0.99 | 1.01 | 1.00 | 0.96 | 1.00 |
t(6–10) | 1.05 | 1.08 | 0.90 | 0.91 | 0.94 | 0.92 |
t(4–12) | 0.97 | 0.94 | 1.00 | 0.98 | 0.96 | 0.98 |
t(28–27) | 0.97 | 0.98 | 0.96 | 0.94 | 1.00 | 0.97 |
0.3074 | 0.1261 | 0.2740 | 0.2782 | 0.4210 | 0.3940 | |
0.3025 | 0.1254 | 0.2710 | 0.2746 | 0.4136 | 0.3890 | |
0.1537 | 0.0631 | 0.0580 | 0.1391 | 0.2105 | 0.0850 | |
0.1513 | 0.0627 | 0.0470 | 0.1373 | 0.2068 | 0.0760 | |
0.2540 | 0.100 | 0.1853 | 0.2181 | 0.3129 | 0.2655 | |
1.1912 | 1.2539 | 1.4659 | 1.2592 | 1.3219 | 1.4678 | |
1.2102 | 1.2614 | 1.4790 | 1.2755 | 1.3453 | 1.4870 | |
1.5585 | 1.6375 | 1.5513 | 1.55249 | 1.56880 | 1.5495 | |
0.1264 | 0.0318 | 0.0058 | 0.05625 | 0.59452 | −0.0637 | |
0.2671 | 0.4248 | 0.2638 | 0.3328 | 0.02932 | 0.5000 | |
1.0328 | 1.035 | 1.0303 | 1.0296 | 1.0298 | 1.0313 | |
1.0294 | 1.031 | 1.0336 | 1.0269 | 1.0251 | 1.0355 | |
1.0949 | 1.076 | 1.0937 | 1.0914 | 1.0845 | 1.0951 | |
1.0676 | 1.046 | 1.0783 | 1.0730 | 1.0549 | 1.0531 | |
0.94 | 0.97 | 1.05 | 0.99 | 1.05 | 1.05 | |
0.96 | 1.02 | 1.05 | 1.02 | 1.08 | 1.07 | |
25.5893 | 25.855 | 11.1700 | 25.5899 | 25.9525 | 10.9570 | |
25.5952 | 26.387 | 8.6450 | 26.4719 | 25.8957 | 9.5580 | |
26.5651 | 26.5832 | 11.9519 | 26.5651 | 26.5651 | 12.1742 | |
26.5726 | 26.5651 | 9.8391 | 26.5651 | 26.5651 | 11.0548 | |
11.9679 | 12.3874 | 11.4700 | 11.4923 | 11.9300 | 11.0246 |
Scenarios | Parameter Value | (MW) | ||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | |||||
1 | 1 | 2 | 1 | 0.5 | 12.0107 | 11.5050 |
2 | 1 | 2 | 1 | 1 | 13.1057 | 13.0687 |
3 | 1 | 2 | 2 | 0.5 | 11.7952 | 11.5628 |
4 | 1 | 2 | 2 | 1 | 12.1605 | 11.4449 |
5 | 1 | 4 | 1 | 0.5 | 11.7125 | 11.0981 |
6 | 1 | 4 | 1 | 1 | 12.5809 | 11.9604 |
7 | 1 | 4 | 2 | 0.5 | 11.5763 | 11.1384 |
8 | 1 | 4 | 2 | 1 | 11.5254 | 11.0643 |
9 | 1 | 6 | 1 | 0.5 | 11.6948 | 11.1663 |
10 | 1 | 6 | 1 | 1 | 12.3014 | 11.7696 |
11 | 1 | 6 | 2 | 0.5 | 11.5007 | 11.0332 |
12 | 1 | 6 | 2 | 1 | 11.5002 | 11.0379 |
13 | 2 | 2 | 1 | 0.5 | 11.7392 | 11.1290 |
14 | 2 | 2 | 1 | 1 | 11.8307 | 12.2741 |
15 | 2 | 2 | 2 | 0.5 | 11.9015 | 11.2261 |
16 | 2 | 2 | 2 | 1 | 12.2811 | 11.3594 |
17 | 2 | 4 | 1 | 0.5 | 11.9269 | 11.1986 |
18 | 2 | 4 | 1 | 1 | 11.9347 | 11.4218 |
19 | 2 | 4 | 2 | 0.5 | 11.6119 | 11.0854 |
20 | 2 | 4 | 2 | 1 | 11.5357 | 11.0796 |
21 | 2 | 6 | 1 | 0.5 | 11.6670 | 11.5911 |
22 | 2 | 6 | 1 | 1 | 12.8450 | 11.4789 |
23 | 2 | 6 | 2 | 0.5 | 11.4700 | 11.0246 |
24 | 2 | 6 | 2 | 1 | 11.5045 | 11.0405 |
Order of Harmonics | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [29] | AOA | BSA [28] | ABC [29] | AOA | |
5th | 0.9995 | 0.9999 | 0.9988 | 0.9994 | 0.9999 | 0.9982 |
7th | 0.9991 | 0.9999 | 0.9976 | 0.9988 | 0.9998 | 0.9964 |
11th | 0.9977 | 0.9997 | 0.9941 | 0.9970 | 0.9996 | 0.9911 |
13th | 0.9967 | 0.9996 | 0.9917 | 0.9959 | 0.9995 | 0.9875 |
Order of Harmonics | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [29] | AOA | BSA [28] | ABC [29] | AOA | |
5th | 0.9997 | 0.9994 | 0.9832 | 0.9996 | 0.9992 | 0.9968 |
7th | 0.9994 | 0.9989 | 0.9673 | 0.9992 | 0.9985 | 0.9938 |
11th | 0.9984 | 0.9972 | 0.9204 | 0.9981 | 0.9964 | 0.9847 |
13th | 0.9978 | 0.9961 | 0.8899 | 0.9973 | 0.9949 | 0.9786 |
Performance Parameters | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [29] | AOA | BSA [28] | ABC [29] | AOA | |
FF | 1.0116 | 1.0119 | 1.0029 | 1.0116 | 1.0125 | 1.0022 |
RF | 0.1530 | 0.1549 | 0.0761 | 0.1530 | 0.1583 | 0.0659 |
TDD | 23.32 | 23.39 | 23.20 | 23.30 | 23.39 | 23.10 |
TUF | 0.1833 | 0.0752 | 0.1634 | 0.1804 | 0.0748 | 0.1616 |
VUF | 1.3497 | 1.2949 | 1.1044 | 1.3712 | 1.3027 | 1.1143 |
Performance Parameters | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [29] | AOA | BSA [28] | ABC [29] | AOA | |
FF | 1.0116 | 1.0120 | 1.0033 | 1.0125 | 1.0119 | 1.0025 |
RF | 0.1531 | 0.1552 | 0.0810 | 0.1586 | 0.1548 | 0.0706 |
TDD | 23.35 | 23.31 | 21.45 | 23.34 | 23.28 | 22.91 |
TUF | 0.1659 | 0.2510 | 0.2349 | 0.1637 | 0.2466 | 0.2319 |
VUF | 1.2806 | 1.2142 | 1.0985 | 1.2972 | 1.2357 | 1.1128 |
Case 3 | Case 4 | |||||
---|---|---|---|---|---|---|
Variable | BSA [28] | ABC [28] | AOA | BSA [28] | ABC [28] | AOA |
1.4000 | 1.28270 | 1.4000 | 1.4000 | 1.18985 | 1.3996 | |
1.078 | 1.073 | 1.0737 | 1.075 | 1.049 | 1.0823 | |
1.063 | 1.049 | 1.0724 | 1.058 | 1.027 | 1.0687 | |
0.26 | 0.40 | 0.3037 | 0.40 | 0.31 | 0.2601 | |
0.36 | 0.29 | 0.3021 | 0.35 | 0.40 | 0.3868 | |
0.16 | 0.20 | 0.2357 | 0.24 | 0.24 | 0.1747 | |
0.24 | 0.23 | 0.2393 | 0.24 | 0.19 | 0.1510 | |
t(6–9) | 0.96 | 0.97 | 1.02 | 1.01 | 0.94 | 1.00 |
t(6–10) | 0.92 | 0.91 | 0.90 | 0.90 | 0.91 | 0.90 |
t(4–12) | 1.03 | 0.97 | 1.00 | 0.97 | 0.96 | 0.98 |
t(28–27) | 0.98 | 0.95 | 0.97 | 0.99 | 0.90 | 0.95 |
DG1 size(loc) | 10.00 (5) | 10.00 (5) | 10.00 (30) | 9.50 (5) | 9.75 (5) | 10.00 (30) |
DG2 size(loc) | 10.00 (19) | 9.75 (19) | 10.00 (7) | 7.25 (21) | 8.75 (19) | 10.00 (19) |
DG3 size(loc) | 6.75 (30) | 9.25 (25) | 10.00 (5) | 10.00 (30) | 8.00 (30) | 10.00 (5) |
0.2500 | 0.2604 | 0.2650 | 0.3462 | 0.4320 | 0.4360 | |
0.2472 | 0.2566 | 0.2620 | 0.3409 | 0.4213 | 0.4300 | |
0.1250 | 0.1302 | 0.0570 | 0.1731 | 0.2160 | 0.0900 | |
0.1236 | 0.1283 | 0.0480 | 0.1705 | 0.2106 | 0.0850 | |
0.1940 | 0.2246 | 0.1767 | 0.2651 | 0.3773 | 0.2916 | |
1.2743 | 1.1422 | 1.4875 | 1.2859 | 1.1167 | 1.4758 | |
1.2888 | 1.1591 | 1.5000 | 1.3058 | 1.1450 | 1.4970 | |
1.26162 | 1.36131 | 1.2209 | 1.25923 | 1.48930 | 1.2208 | |
0.11841 | 0.25962 | −0.2188 | 0.12143 | 0.18268 | 0.0646 | |
0.38353 | 0.15983 | 0.5000 | 0.25626 | 0.41020 | 0.3538 | |
1.019 | 1.022 | 1.0375 | 1.033 | 0.990 | 1.0288 | |
1.020 | 1.010 | 1.0335 | 1.026 | 0.991 | 1.0344 | |
1.077 | 1.088 | 1.0882 | 1.085 | 1.094 | 1.0818 | |
1.042 | 1.070 | 1.0766 | 1.070 | 1.044 | 1.0616 | |
1.00 | 0.91 | 1.06 | 1.02 | 0.92 | 1.06 | |
1.05 | 0.92 | 1.07 | 1.04 | 0.92 | 1.07 | |
25.6475 | 25.4202 | 11.334 | 25.8082 | 25.2163 | 10.3270 | |
25.8038 | 26.1961 | 9.2970 | 25.6037 | 25.5373 | 9.4100 | |
29.5167 | 29.5167 | 12.1390 | 29.5167 | 29.5167 | 11.6633 | |
29.5167 | 29.5167 | 10.3818 | 29.5242 | 29.5107 | 11.1818 | |
9.2298 | 9.4227 | 8.4534 | 8.7459 | 8.9475 | 8.0041 |
Order of Harmonics | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [28] | AOA | BSA [28] | ABC [28] | AOA | |
5th | 0.9997 | 0.9996 | 0.9989 | 0.9997 | 0.9994 | 0.9985 |
7th | 0.9994 | 0.9993 | 0.9979 | 0.9993 | 0.9987 | 0.9971 |
11th | 0.9986 | 0.9983 | 0.9949 | 0.9983 | 0.9969 | 0.9929 |
13th | 0.9980 | 0.9976 | 0.9928 | 0.9977 | 0.9957 | 0.9901 |
Order of Harmonics | Rectifier | Inverter | ||||
---|---|---|---|---|---|---|
BSA [28] | ABC [28] | AOA | BSA [28] | ABC [28] | AOA | |
5th | 0.9996 | 0.9988 | 0.9972 | 0.9995 | 0.9985 | 0.9965 |
7th | 0.9992 | 0.9977 | 0.9946 | 0.9990 | 0.9971 | 0.9932 |
11th | 0.9981 | 0.9944 | 0.9867 | 0.9974 | 0.9927 | 0.9833 |
13th | 0.9974 | 0.9922 | 0.9815 | 0.9964 | 0.9899 | 0.9768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, C.; Malakar, T.; Sreejith, S. Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables. Energies 2023, 16, 5800. https://doi.org/10.3390/en16155800
Patel C, Malakar T, Sreejith S. Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables. Energies. 2023; 16(15):5800. https://doi.org/10.3390/en16155800
Chicago/Turabian StylePatel, Chintan, Tanmoy Malakar, and S. Sreejith. 2023. "Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables" Energies 16, no. 15: 5800. https://doi.org/10.3390/en16155800
APA StylePatel, C., Malakar, T., & Sreejith, S. (2023). Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables. Energies, 16(15), 5800. https://doi.org/10.3390/en16155800